Thermal plasmas

Equilibrium (or LTE) plasmas are characterized, deriving thermodynamic, transport properties and equilibrium composition, in a wide range of pressure and temperatures, ranging from technological applications to planetary atmospheres and stellar plasmas.


Thermodynamics and Transport in Equilibrium Plasmas

Thermodynamic properties and equilibrium chemical composition of complex gas mixtures (Earth, Mars and Jupiter atmospheres) have been calculated in the framework of the statistical thermodynamics, exploiting a fast and stable algorithm for the solution of the chemical equilibrium composition with the hierarchical approach. A simplified model, the two-level approach, to calculate partition functions and thermodynamic properties of atomic species has been proposed, reducing the number of the true atomic states in few virtual levels through a grouping procedure.
Transport coefficients (thermal conductivity λ, viscosity η and electrical conductivity σe) for plasmas generated in the impact of space vehicles on different planetary atmospheres (Earth, Jupiter, Mars), have been derived, in the framework of the Chapman Enskog theory, considering a high-order approximation and including also minor species. The core of the calculation is represented by the characterization of binary interactions, i.e. the derivation of collision integrals, describing the microscopic dynamics. The phenomenological approach has been proposed and validated for a number of different systems, that is based on modeling the average interparticle interaction with a phenomenological potential, whose parameters can be estimated through correlation formulas from physical properties of the collisional partners. Moreover a novel efficient algorithm has been implemented based on fractal integration.
The web-access computational tool EquilTheta, that calculates chemical equilibrium product concentrations, thermodynamic and transport properties for a given mixture in wide temperature and pressure ranges, is the focus of a business plan for the creation of a CNR-UniBAS spin-off.

High-Density Plasmas

The thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma have been investigated, accounting for quantum effects due to the change in the energy spectrum of atomic hydrogen when the electron-proton interaction is considered embedded in the surrounding particles. High-density conditions have been simulated assuming a simple confined-atom model, with the atom fixed in the centre of a spherical box, or atomic hydrogen subject to a screened Coulomb potential.

Laser-induced Plasmas

Laser induced plasma, LIP, is a technique of growing interest in different fields such as material processing, diagnostic, chemical analysis and space applications (Mars Curiosity Rover). Theoretical investigations have been dedicated to verify the assumption of local thermodynamic equilibrium (LTE), commonly considered for calibration-free LIBS.

  1. titanium laser-induced plume expansion
    Nanosecond laser pulsed have been used to evaporate metal and metal oxides, in different environments, such as vacuum chamber, free air and water, in this last case also simulating the bubble dynamics. The role of chemical reactions in the dynamics of plume expansion has been investigated under different assumptions, such as LTE, free flow (without reactions) and chemical kinetics.
  2. collisional-radiative (CR) model of aluminium-laser induced plasma
    A deeper analysis can be carried out by considering a collisional radiative model for atomic metals, using experimental values of plume parameters such as pressure and temperature.
  3. electron and phonon dynamics in metals
    A similar approach can be used to investigate electron and phonon gas in a solid hitted by a fs laser pulse, exciting the electrons, which relax in ps range exchanging energy with the phonon-lattice.

Fluctuations in Gases and Plasmas

Fluctuation theory describes fundamental plasma processes and also provides expressions for the spectral densities of fluctuating plasma quantities as function of the averaged distribution function. This particular outcome of the fluctuation framework constitutes the basis of a number of independent diagnostics that can be implemented in diverse plasma environments. While fluctuation theory is rigorous for collisionless fully ionized plasmas, there exist regimes where approximate methods have to be invoked. Numerical experiments, which are performed by mean of Molecular Dynamics simulations, allows us to explore such regimes which are intractable by the analytical approach.

Facilities & Labs

HPC Cluster and Services @ Bari





CNR Researcher



CNR Researcher



CNR Researcher



Associate Professor


Lucia Daniela


CNR Researcher




Professor Associate



Professor Associate


  1. D. Bruno, A. Frezzotti, G.P. Ghiroldi, Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo, Phys. Fluids 27 057101 (2015). DOI: 10.1063/1.4921157.
  2. V. Laporta, D. Bruno, Electron-vibration energy-exchange models in nitrogen-containing plasma flows, J. Chem. Phys. 138 104319 (2013). DOI: 10.1063/1.4794690.
  3. D. Bruno, F. Esposito, V. Giovangigli, Relaxation of rotational-vibrational energy and volume viscosity in H-H2 mixtures, J. Chem. Phys. 138 084302 (2013). DOI: 10.1063/1.4792148.
  4. M. Tuttafesta, A. D’Angola, A. Laricchiuta, P. Minelli, M. Capitelli, G. Colonna, GPU and Multi-core based Reaction Ensemble Monte Carlo method for non-ideal thermodynamic systems, Computer Physics Communications, 185, 540–549, (2014); doi: 10.1016/j.cpc.2013.10.017
  5. G. Colonna, A. D’Angola, A. Laricchiuta, D. Bruno, M. Capitelli, Analytical Expressions of Thermodynamic and Transport Properties of the Martian Atmosphere in a Wide Temperature and Pressure Range, Plasma Chemistry and Plasma Processing, 33, 401–431, (2013); doi: 10.1007/s11090-012-9418-4
  6. G. D’Ammando, G. Colonna, M. Capitelli, A simplified approach to calculate atomic partition functions in plasmas, Physics of Plasmas, 20, 032108, (2013); doi: 10.1063/1.4794286
  7. A. V. Kosarim, B. M. Smirnov, A. Laricchiuta, M. Capitelli, Resonant charge-exchange involving excited helium atoms and reactive transport of local thermodynamic equilibrium helium plasma, Physics of Plasmas, 19, 062309, (2012); doi: 10.1063/1.4729727
  8. D. Bruno, G. Colonna, A. Laricchiuta and M. Capitelli, Reactive and internal contributions to the thermal conductivity of local thermodynamic equilibrium nitrogen plasma: The effect of electronically excited states, Physics of Plasmas, 19, 122309, (2012); doi:10.1063/1.4771689
  9. A. D’Angola, G. Colonna, A. Bonomo, D. Bruno, A. Laricchiuta, M. Capitelli, A phenomenological approach for the transport properties of air plasmas, The European Physical Journal D, 66, 205, (2012); doi: 10.1140/epjd/e2012-30147-8
  10. M. Capitelli, G. Colonna, G. D’Ammando, R. Gaudiuso, L. D. Pietanza, Physical Processes in Optical Emission Spectroscopy, Chapter in Laser-Induced Breakdown Spectroscopy in the series Springer Series in Optical Sciences, vol. 182, 31-57, (2014); doi: 10.1007/978-3-642-45085-3_2

Latest News

La settimana del rosa digitale - 4^ed

La settimana del rosa digitale - 4^ed


Percorso di condivisione della carriera di scienziato-donna fatto attraverso esperimenti di estrazione di sostanze chimiche partendo dal cibo.

11 e 15 marzo 2019

Via Marconi,39 - Casamassima Bari 70010

Che “cavolo" di arcobaleno-mamme e scienza un viaggio alla scoperta di cio’ che Madre Natura ci insegna.

con Eloisa Sardella (CNR Nanotec) e Laura Rosso (PSP)

maggiori info:

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics


Castello Carlo V, Lecce 27 -31 Maggio 2019

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.


TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.


Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio:

Link video di presentazione Tecnomed:

Link video dichiarazione Michele Emiliano: