Imaging

1. (upper panels) Fluorescent inorganic nanoparticles and organic nanostructures for imaging and sensing intracellular and extracellular environment. (Lower panels) Vascular and neuronal networks of mouse-spinal cord: X-ray Phase Contrast Tomography (XPCT). From left: longitudinal distribution of moto-nuclei; interface white-grey matter where axons enter in the neurons cells; XPCT of single neuron soma; XPCT of white and grey matter; radial and longitudinal view of vascular network.
1. (upper panels) Fluorescent inorganic nanoparticles and organic nanostructures for imaging and sensing intracellular and extracellular environment. (Lower panels) Vascular and neuronal networks of mouse-spinal cord: X-ray Phase Contrast Tomography (XPCT). From left: longitudinal distribution of moto-nuclei; interface white-grey matter where axons enter in the neurons cells; XPCT of single neuron soma; XPCT of white and grey matter; radial and longitudinal view of vascular network.

At NANOTEC several high resolution techniques are available for fine imaging of biomolecules, living cells and tissue. Mainly we focus on engineering of high-resolution molecular and semiconductor-based tools for fine fluorescence imaging, scanning probe-based microscopy and spectroscopy, and X-ray optics and X-ray imaging.

Fluorescent Tools for Bioimaging of Cells and Tissues 

We prepare various kinds of fluorescent imaging tools for in vitro and in vivo imaging, mainly of cells and tissues. This class of labelling agents include organic thiophene fluorophores, and semiconducting quantum dots (QDs) or rods (QRs). Our thiophene and QD-based reagents show strong luminescence that is independent of the microenvironment, may be designed to work in the optical window of biomatter (600 – 900 nm range), display rapid internalization and excellent retention inside cells, and appear to be non toxic at least in short-term experiments. In addition, in the case of inorganic nanoparticles large surface/volume ratios enable biofunctionalization of the surface and binding of functional moieties for specific targeting studies. Another set of imaging tools includes fluorescent ratiometric capsule-based sensors, which have fluorescent probes embedded in their cavities, allowing to overcome some of the main limitations of freely injected probes (e.g. intracellular sequestration or inactivation, non-specific binding, toxicity). These sensor platforms are suitable for long-term intracellular and extracellular sensing of multiple chemical parameters (ions and metabolites) in living and metabolizing cells, including tumor cells or cells exposed to candidate drugs.

Nanoscale Characterization of Biomaterials and Nanostructured Surfaces

We employ state-of-the-art microscopy techniques (e.g., Scanning Probe Microscopies like Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM), Scanning Electron Microscopy, Confocal Laser Microscopy) for studying the morphological and chemico-physical properties of nano(bio)materials and nanostructured surfaces, as well as to gain a full understanding of the correlation between the fabricated structures and the resulting functionality. By means of STM, AFM and Scanning Force-Spectroscopy analyses, we have extensively characterized the morphological, mechanical and conductive properties of solid-state protein films and self-assembled peptide fibrils to be used as bridges in hybrid molecular junctions. Finally, we synthesize and characterize biomimetic and biocompatible surfaces with stiffness modulation and/or a biopolymeric coating, for eliciting controlled cell self-patterning, proliferation and differentiation with important implications in regenerative medicine.

Biomedical Imaging

The team in Rome has a large experience in X-ray optics and X-ray imaging. In recent years the team is exploiting this competence for the biomedical imaging of neurodegenerative diseases. In particular, faults in vascular (VN) and neuronal networks (NN) of the spinal cord are associated with serious neurodegenerative pathologies. Because of inadequate investigation tools, the knowledge of the fine structure of VN and NN is fragmentary, which represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. X-ray high-resolution phase-contrast tomography (XPCT) allows the simultaneous visualization of three-dimensional VN and NN of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, withoutcontrast agents, or sectioning or destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibres, axon-bundles and neuron soma. The high quality of the images obtained allows a quantitative study, enabling the extraction of relevant biomedical information.

Our approach is well suitable for pre-clinical investigations of neurodegenerative pathologies and spinal-cord-injuries. In this framework, we used XPCT to study degenerations in vascular and neuronal networks of the spinal cord affected by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Preclinical studies have demonstrated that mesenchymal stem cells (MSC) therapy ameliorates EAE. By means of XPCT, we investigated 3D sub-micron damage in the VN and NN in EAE with and without MSC treatment. We have identified a deficit in the Vascular-Network, including capillaries, never detected before, and which is reduced through MSC treatment. Similarly, the attack to myelin and neurons also appears to be reduced by MSC administration.

This study paves the way to advanced study of immune-mediated CNS diseases, and to the accurate monitoring of the effectiveness of treatment.

Facilities & Labs

Characterization Lab @ Lecce

Bio Lab @ Lecce

Toma Lab @ Rome

People

Loretta_delMercatoLoretta L.

del Mercato

CNR Researcher

Ilaria_PalamaIlaria E.

Palamà

CNR Researcher

michelaMichela

Fratini

CNR Researcher

Barbara_CorteseBarbara

Cortese

CNR Researcher

Alessandra_QuartaAlessandra

Quarta

CNR Researcher

fabrizioFabrizio

Bardelli

Associate Researcher

cedolaAlessia

Cedola

CNR Researcher

lorenzo_3Lorenzo

Massimi

CNR PostDoc

brun_2Francesco

Brun

CNR PostDoc

Publications

  1. L. L. del Mercato, F. Guerra, G. Lazzari, C. Nobile, C. Bucci, R. Rinaldi. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake. Nanoscale. 8, 7501-7512 (2016). ISSN: 2040-3372; doi: 10.1039/C5NR07665J.
  2. I. Bukreeva, A. Mittone, A. Bravin, G. Festa, M. Alessandrelli, P. Coan, V. Formoso, R.G. Agostino, M. Giocondo, F. Ciuchi, M. Fratini, L. Massimi, A. Lamarra, C. Andreani, R. Bartolino, G. Gigli, G. Ranocchia, A. Cedola. Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography, Scientific Reports 6, 27227 (2016). ISSN: 2045-2322; doi: 10.1038/srep27227
  3. L. L. del Mercato, M. M. Ferraro, F. Baldassarre, S. Mancarella, V. Greco, R. Rinaldi, S. Leporatti. Biological Applications of LbL Multilayer Capsules: From Drug Delivery to Sensing. Advances in Colloids and Interface Science, 207, 139–154, (2014). ISSN: 0001-8686; doi: 10.1016/j.cis.2014.02.014.
  4. De Luca, M.M. Ferraro, R. Hartmann, P. Pilar Rivera-Gil, A. Klingl, M. Nazarenus, A. Ramirez, W.J. Parak, C. Bucci, R. Rinaldi, L.L. del Mercato. Advances in Use of Capsule-Based Fluorescent Sensors for Measuring Acidification of Endocytic Compartments in Cells with Altered Expression of V-ATPase Subunit V1G1. ACS Appl. Mater. Interfaces, 7, 15052−15060 (2015). ISSN 1944-8244; doi: 10.1021/acsami.5b04375.
  5. L. L. del Mercato, M. Moffa, R. Rinaldi, D. Pisignano. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution. Small, 11, 6417-6424 (2015). ISSN: 1613-6810; doi: 10.1002/smll.201502171.
  6. M. Fratini, G. Bukreeva, F. Campi, G. Brun, P. Tromba, D. Modregger, G. Bucci, R. Battaglia, M. Spanò, H. Mastrogiacomo, F. Requardt, A. Giove, A. Bravin and A. Cedola. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Scientific Reports 5, 8514 (2015). ISSN: 2045-2322; doi: 10.1038/srep08514.
  7. M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, A. Cedola Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord, Scientific Reports 5, 8514 (2015)ISSN: 2045-2322; doi: 10.1038/srep10771
  8. M. Fratini, I. Bukreeva, G. Campi, R. Spano’, M. Mastrogiacomo, F. Brun, G. Tromba, F. Giove, A. Cedola. Study of the vascular network in the spinal cord using advanced techniques Journal of Tissue Engineering and Regenerative Medicine 8, 192 (2014). ISSN: 1932-6254.
  9. Di Maria, I.E. Palamà, M. Baroncini, A. Barbieri, R. Bizzarri, G. Gigli, G. Barbarella, Live Cell Cytoplasm Staining and Selective Labeling of Intracellular Proteins by Non-toxic Cell-permeant Thiophene Fluorophores. Organic & Biomolecular Chemistry, 12: 1603-1610 (2014). ISSN: 1477-0520; doi: 10.1039/C3OB41982G

 

Other selected publications

  1. L.L. del Mercato, P.P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A.M. Tamburro, R. Cingolani, R. Rinaldi, Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proceedings of the National Academy of Sciences (PNAS), 46, 18019-18024 (2007). ISSN: 0027-8424; doi: 10.1073/pnas.0802398105
  2. L.L. del Mercato, G. Maruccio, P.P. Pompa, B. Bochicchio, A.M. Tamburro, R. Cingolani, R. Rinaldi, Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties. Biomacromolecules, 9, 796–803 (2008). ISSN: 1525-7797; doi: 10.1021/bm7010104
  3. A. Zacheo, A. Quarta, A. Mangoni, P.P. Pompa, R. Mastria, M.C. Capogrossi, R. Rinaldi, T. Pellegrino. CdSe/CdS Semiconductor Quantum Rods as Robust Fluorescent Probes for Paraffin-Embedded Tissue Imaging. IEEE Transactions on Nanobiosciences, 10, 3, 209-215 (2011). ISSN: 1536-1241; doi: 10.1109/TNB.2011.2166404.
  4. I.E. Palamà, F. Di Maria, I. Viola, E. Fabiano, G. Gigli, C. Bettini, G. Barbarella. Live-cell-permeant thiophene fluorophores and cell-mediated formation of fluorescent fibrils. Journal of the American Chemical Society (JACS), 133, 17777–17785 (2011). ISSN: 0002-7863; doi: 10.1021/la2065522.
  5. L.L. del Mercato, A.Z. Abbasi, M. Ochs, W.J. Parak. Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules. Small, 7, 351-363 (2011). ISSN: 1613-6810; doi: 10.1002/smll.201001144.
  6. A. Quarta, A. Curcio, H. Kakwere, T. Pellegrino. Polymer Coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implication. Nanoscale, 4, 11, 3319-333 (2012). ISSN: 2040-3364; doi: 10.1039/c2nr30271c.
  7. L.L. del Mercato, A.Z. Abbasi, M. Ochs, W.J. Parak. Multiplexed Sensing of Ions with Barcoded Polyelectrolyte Capsules. ACS Nano, 5, 9668–9674 (2011). ISSN: 1936-0851; doi: 10.1021/nn203344w
  8. I.E. Palamà, A.M.L. Coluccia, G. Gigli, M. Riehle. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials. Integrative Biology, 4, 1299-1309 (2012). ISSN: 1757-9694; doi: 10.1039/c2ib20133j.
  9. I.E. Palamà, S. D’Amone, A.M.L. Coluccia, M. Biasiucci, G. Gigli. Cell self-patterning on uniform PDMS-surface with controlled mechanical cues. Integrative Biology, 4, 228-236 (2012). ISSN: 1757-9694; doi: 10.1039/c2ib00116k.
  10. I.E. Palamà, S. D’Amone, A.M.L. Coluccia, G. Gigli. Micropatterned polyelectrolyte multilayer films promote alignment and myogenic differentiation of C2C12 cells in standard growth medium.  Biotechnology & Bioengineering, 110, 586-596 (2013). ISSN: 0006-3592; doi: 10.1002/bit.24626.

Project

  1. NaBiDiT – Nano-Biotecnologie per Diagnostica e sviluppo di Terapie innovative; Regional project APQ Ricerca Scientifica—Reti di Laboratori Pubblici di Ricerca – (2010-2012).
  2. MAGNIFYCO – Magnetic nanocontainers for combined hyperthermia and controlled drug release; Project ID: 228622 – FP7-NMP (2009-2013)
  3. RINOVATIS – Rigenerazione di tessuti nervosi ed osteocartilaginei mediante innovativi approcci di Tissue Engineering; MIUR-PON (2013-2015), Grant PON02_00563_3448479.
  4. VOXEL – Volumetric medical X-ray imaging at extremely low dose; EC H2020 – FET OPEN -2014-2015 – RIA;  (2015-2019)
  5. Multimodal experimental and theoretical approach for the study of the Spinal Cord in healthy and diseased subjects” Progetto Giovani ricercatori del Ministero della Salute (GR-2013-02358177). Bando 2013
  6. BiominAB-3D – Revealing the composition and formation mechanism of carcinogenic asbestos bodies in human lungs; MSCA-IF-2015-EF – Marie Skłodowska-Curie Individual Fellowships (IF-EF), Marie Skłodowska-Curie Individual Fellowships (2016-2018)

Latest News

Technology Trasfer in Nanotechnology

Technology Transfer in Nanotechnology: Challenges and Opportunity

Lecce, 18/19 ottobre 2018

CNR NANOTEC c/o Campus Ecotekne

JRC in collaboration with the National Research Council (Cnr) is organising a workshop on Technology Transfer in Nanotechnology,

which will take place in CNR Nanotec (Lecce, Italy) on 18 and 19 October. This workshop is organised in the framework of the TTO-CIRCLE initiatives.   The aim of this event is to explore how technology transfer activities can be used as a mechanism to help EU industry, particularly Start-ups and SMEs, and Government in deploying and adopting Nano-technology. Practical examples will be presented to illustrate the potential of technology transfer in this area.   The workshop will gather technology providers, industry executives, technology transfer officers, policy makers and financial intermediaries to share experiences and lessons learned. One of the key objectives is to discuss policy implications at all levels that could help accelerating the adoption of Nanotechnology by the European manufacturing industry. More informations: https://ec.europa.eu/jrc/communities/community/european-tto-circle/event/technology-transfer-nanotechnology Download Locandina

Nanotechnology Transfer Day

26 Luglio 2018 - Lecce

CNR NANOTEC c/o Campus Ecotekne Siglato l’accordo lo scorso maggio tra CNR NANOTEC e Pairstech Capital Management, ha preso il via la collaborazione con PhD TT per la valutazione della ricerca

E’partita la collaborazione con PhD TT per la valorizzazione della ricerca sulla base dell’accordo siglato lo scorso Maggio tra CNR NANOTEC e Pairstech Capital Management, società di gestione patrimoniale che fornisce agli investitori istituzionali e privati un insieme di veicoli di investimento, al fine di valorizzare i risultati della ricerca svolta all'interno dell'Istituto.

Giovedì 19 Luglio dalle ore 11 alle ore 14 nella sede del CNR Nanotec di Lecce si è tenuto un incontro sul trasferimento tecnologico nel settore delle nanotecnologie applicate al settore biomedicale.

L’evento è stato organizzato dall’ufficio di Trasferimento Tecnologico del CNR Nanotec che ha inaugurato con questa giornata un ciclo di eventi mirato a presentare agli attori dell’ecosistema dell’innovazione nel settore delle nanotecnologie i vari modelli e alcune best practice di trasferimento tecnologico. In questa prima giornata il dott. Heber Verri e la dott.ssa Paola Urbani hanno presentato il nuovo modello di trasferimento tecnologico PhD TTãIndex Model.

PhD TT è una realtà italiana completamente indipendente specializzata in trasferimento tecnologico, è un acceleratore organizzato per il Go to Venture Practice, orientata al mondo delle Lifes Sciences.

PhD TT ha sviluppato un nuovo modello di trasferimento tecnologico: il PhD TT©INDEX MODEL dedicato alla generazione di valore dell'innovazione, focalizzato alla riduzione dei rischi delle opportunità di investimento a sostegno della ricerca.

I ricercatori intervengono attivamente nell'analisi iniziale di fattibilità e nella costituzione della futura società (start-up), con l'obiettivo di attrarre capitale di rischio utile a sostenere la fase del trasferimento tecnologico nella visione della "Research for go-to-market".

Il modello PhD TT nasce da un bisogno del mercato, quello di far dialogare due mondi estremamente diversi tra loro: il mondo della ricerca e il mondo degli investimenti.

PhD TT supporta tutte le attività in collaborazione con il TTO - CNR Nanotec con un team di lavoro esperto e grazie a un comitato scientifico-economico qualificato.

In occasione dell'evento del 19/7 u.s. al CNR Nanotec di Lecce, PHD TT ha presentato il proprio track record, dove si sono potuti valutare in dettaglio i casi di successo di intervento del PhD TT©INDEX MODEL.

  Comunicato Stampa Photo Gallery

Disordered serendipity: a glassy path to discovery

A workshop in honour of Giorgio Parisi’s 70th birthday

September 19-21, 2018 - Roma

Sapienza University

With the occasion of celebrating Giorgio Parisi 70th birthday, the conference "Disordered serendipity: a glassy path to discovery" brings to Rome many among the world-leading experts in the field of complex systems. In order to properly represent the many fields of research where Giorgio Parisi gave a relevant contribution in his studies of disordered systems, the conference covers a broad spectrum of topics: from  fundamental and rigorous analysis of the statistical mechanics of disorder systems to applications in biology and computer science. These subjects are deeply interconnected since they are characterized by the presence of glassy behavior.

 

https://sites.google.com/site/disorderedserendipity/