Photonics in Random Media

In recent years, random lasing materials (e.g. powders, porous media, precipitates in solution, or photonic crystals with impurities) have been extensively studied experimentally. Pumping energy into these systems causes them to re-emit multi-mode coherent light, with a spectrum displaying randomly arranged peaks in frequency. Starting from the structure and geometry of the atoms and molecules that scatter the light waves, one would eventually want a theory that predicts the onset, the nature and the features of the light modes and answering the following questions.

  1. What shape and size do light modes display in space ?
  2. In which dimension and under which conditions do they localize because of disorder?
  3. On which frequencies do light modes emit in cavity-less media?
  4. Can there be a random laser pulse in time?
  5. Do competing random laser modes phase-lock as in multimode standard lasers?
  6. How strong is the coupling magnitude and how is it related to the coupling modes spatial overlap and the etherogeneous optical susceptibility?

The latter two questions are connected to the coupling property of depending on the spatial overlap of the electromagnetic fields of the interacting modes. This feature ascribes to the problem of assessing the structure of an interacting network of light-modes in a statistical mechanics representation. Indeed, a set of modes can interact only if their electromagnetic fields overlap in space and, in the lasing regime, non-linear amplification occurs only if the frequencies of the modes satisfy some kind of mode-locking condition. These rules strongly influence the set of feasible interactions in which each mode is viewed as a network node. A key challenge that we address is the characterization of the structure of this network of wave-modes, including the strengths and signs of the relevant random interactions, as is required, e.g., in order to distinguish apart physical regimes of laser stationary behaviour. To this aim a Hamiltonian theory has been derived and investigated in systems with different kinds of bond-disorder, ranging from standard ordered multimode mode-locking lasers to recently introduced glassy random lasers.

Glassy Random Laser and Experimental Measurement of Replica Symmetry Breaking

The investigation of the glassy behaviour of light in the framework of our theory is made possible by means of a newly introduced overlap parameter, the Intensity Fluctuation Overlap (IFO) measuring the correlation between intensity fluctuations of waves in random media. This order parameter allows to identify the laser transition in arbitrary physical regimes, with varying amount of disorder and non-linearity. In particular, in random media it allows for the identification of the glassy nature of some kind of random laser, in terms of emission spectra data, the only data so far accessible in random laser measurements. The model devised from first principles in whose framework the parameter is defined is the nonlinear phasor statistical mechanical model. This is a generalised complex spherical spin-glass model solvable in the mean-field approximation by Replica Symmetry Breaking theory. IFO measurements are possible in real experiments, recently leading to a validation of the RSB theory and a new characterisation of lasers in terms of spectral intensity fluctuations.

Interference of Coupling of Waves in Random Media

The light modes interaction network has to be inferred starting from data acquired in measurements, of spectra and correlations of phases and amplitudes of the light modes, and this inference problem is closely analogous to those in our other areas of application of statistical inference. Starting with the analysis of the inverse problem in statistical mechanical systems with continuous variables, like XY and complex phasors, our inference project is concerned with the bottom-up approach for studying statistical models for application to wave and optics. The parameters describing a given model system, like active links in the network system and external field affecting the system, are inferred using the data set which is made available by experimental or numerical measurements.

We adopt various inference techniques to reconstruct the interaction networks and to estimate the coupling values: mean-field approach, Pseudo Likelihood Maximization (PLM) with L1 and L2 regularizations and PLM with decimation. Such inverse problems for network reconstruction are considered on graphs of different kinds, from 2D and 3D nearest-neighbour lattices, Bethe and Erdos-Renyi sparse random graph to dense random graphs.

Facilities and Labs

S.Li.M. Lab @ Roma

People

leuzziLuca

Leuzzi

CNR Researcher

fabrizioantenucci_postdocFabrizio

Antenucci

Associate PostDoc

alessiamarruzzo_postdocAlessia

Marruzzo

Associate PostDoc

payaltyagi_postdocPayal

Tyagi

Associate PostDoc

Publications

  1. F Antenucci, Statistical Physics of Wave Interactions,  Springer (2016).
  2. P Tyagi, A Marruzzo, A Pagnani, F Antenucci, L Leuzzi, Regularization and decimation pseudolikelihood approaches to statistical inference in XY-spin models,  Physical Review B 94, 024203 (2016) Doi: 10.1103/PhysRevB.94.024203.
  3. F Antenucci, A Crisanti, M Ibáñez-Berganza, A Marruzzo, L Leuzzi, Statistical mechanics models for multimode lasers and random lasers.  Philosophical Magazine 96, 704-731 (2016) Doi: 10.1080/14786435.2016.1145359.
  4. F Antenucci, MI Berganza, L Leuzzi, Statistical physics of nonlinear wave interaction,  Physical Review B 92, 014204 (2015) Doi: 10.1103/PhysRevB.92.014204 .
  5. P Tyagi, A Pagnani, F Antenucci, M Ibanez Berganza, L Leuzzi, Inference for interacting linear waves in ordered and random media,  Journal of Statistical Mechanics: Theory and Experiment 2015 (5), Doi: 10.1088/1742-5468/2015/05/P05031
  6. F Antenucci, A Crisanti, L Leuzzi, Complex spherical 2+ 4 spin glass: A model for nonlinear optics in random media,  Physical Review A 91, 053816 (2015) Doi: 10.1103/PhysRevA.91.053816.
  7. F Antenucci, MI Berganza, L Leuzzi, Statistical physical theory of mode-locking laser generation with a frequency comb.  Physical Review A 91, 043811 (2015) Doi: 10.1103/PhysRevA.91.043811  .
  8. A Marruzzo, L Leuzzi, Nonlinear XY and p-clock models on sparse random graphs: Mode-locking transition of localized waves,  Physical Review B 91, 054201 (2015) Doi:10.1103/PhysRevB.91.054201 .
  9. F Antenucci, C Conti, A Crisanti, L Leuzzi, General phase diagram of multimodal ordered and disordered lasers in closed and open cavities.  Physical Review Letters 114, 043901 (2015) Doi: 10.1103/PhysRevLett.114.043901 .
  10. N Ghofraniha, I Viola, F Di Maria, G Barbarella, G Gigli, L Leuzzi, C Conti, Experimental evidence of replica symmetry breaking in random lasers,  Nature communications 6, 5 (2015) Doi:10.1038/ncomms7058 .
  11. F Antenucci, A Crisanti, L Leuzzi, The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra,  Scientific reports 5, 16792 (2015) Doi:10.1038/srep16792 .
  12. F Antenucci, M Ibanez Berganza, L Leuzzi, Statistical mechanical theory of mode-locked multimode lasers in closed cavity: determination of thresholds, spectra, pulse phase delays and pulse correlations.  Phys. Rev. A 91, 043811 (2014) Doi: 10.1103/PhysRevA.91.043811.

Other Selected Publications

  1. V Folli, A Puglisi, L Leuzzi, C Conti, Shaken Granular Lasers,  Physical Review Letters 108, 248002   (2012) Doi: 10.1103/PhysRevLett.108.248002.
  2. L Leuzzi, C Conti, V Folli, L Angelani, G Ruocco, Phase Diagram and Complexity of Mode-Locked Lasers: From Order to Disorder,  Physical Review Letters 102, 083901 (2009) Doi:10.1103/PhysRevLett.102.083901 .

Patents

Project

Statistical mechanics of disordered granular laser systems: theory and experiment,” funded by the Italian Ministry of Research (MIUR) program futuro in ricerca. (2010-2015),

NETADIS: Networks across disciplines, FP7-PEOPLE-2011-ITN Project (2011-2015).

Latest News

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics

TERAMETANANO - IV ed.

 

Castello Carlo V, Lecce 27 -31 Maggio 2018

 

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.

 

TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.

 

Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio: http://rpu.gl/uChUl

Link video di presentazione Tecnomed: http://rpu.gl/Qqerm

Link video dichiarazione Michele Emiliano: http://rpu.gl/aJoee

Alessandro Polini, si aggiudica l'LushPrize2018

Alessandro Polini, si aggiudica l'LushPrize2018

Berlino, 16 novembre 2018 

Alessandro Polini , giovane ricercatore presso l’Istituto di Nanotecnologia del Consiglio nazionale delle ricerche (Cnr-Nanotec) di Lecce, si è aggiudicato il Lush Prize 2018 categoria 'Giovani ricercatori', il premio che incoraggia le idee che promuovono la sperimentazione non animale.

Il giovane salentino ha visto così gratificare il suo studio basato sull’utilizzo di modelli 'organ-on-a-chip' altamente sofisticati per capire i meccanismi patologici alla base della Sclerosi Laterale Amiotrofica (SLA). Formatosi nel campo delle biotecnologie mediche, bioingegneria e nanotecnologie, anche con importanti esperienze internazionali -dal Lawrence Berkeley National Laboratory in California all'Harvard Medical School in Massachusetts per approdare poi alla Radboud University in Olanda- Alessandro Polini è rientrato in Italia per proseguire gli studi relativi ai sistemi 'organ-on-a-chip' grazie alla piattaforma tecnologica TecnoMED, il 'Tecnopolo di nanotecnologia e fotonica per la medicina di precisione' nato presso il Cnr-Nanotec di Lecce da un progetto finanziato da Regione Puglia, Cnr e Miur...

Comunicato Stampa CNR Intervista ad Alessandro Polini, vincitore del Lush Prize 2018 con il progetto ‘organ-on-a-chip’