Photonics in Random Media

In recent years, random lasing materials (e.g. powders, porous media, precipitates in solution, or photonic crystals with impurities) have been extensively studied experimentally. Pumping energy into these systems causes them to re-emit multi-mode coherent light, with a spectrum displaying randomly arranged peaks in frequency. Starting from the structure and geometry of the atoms and molecules that scatter the light waves, one would eventually want a theory that predicts the onset, the nature and the features of the light modes and answering the following questions.

  1. What shape and size do light modes display in space ?
  2. In which dimension and under which conditions do they localize because of disorder?
  3. On which frequencies do light modes emit in cavity-less media?
  4. Can there be a random laser pulse in time?
  5. Do competing random laser modes phase-lock as in multimode standard lasers?
  6. How strong is the coupling magnitude and how is it related to the coupling modes spatial overlap and the etherogeneous optical susceptibility?

The latter two questions are connected to the coupling property of depending on the spatial overlap of the electromagnetic fields of the interacting modes. This feature ascribes to the problem of assessing the structure of an interacting network of light-modes in a statistical mechanics representation. Indeed, a set of modes can interact only if their electromagnetic fields overlap in space and, in the lasing regime, non-linear amplification occurs only if the frequencies of the modes satisfy some kind of mode-locking condition. These rules strongly influence the set of feasible interactions in which each mode is viewed as a network node. A key challenge that we address is the characterization of the structure of this network of wave-modes, including the strengths and signs of the relevant random interactions, as is required, e.g., in order to distinguish apart physical regimes of laser stationary behaviour. To this aim a Hamiltonian theory has been derived and investigated in systems with different kinds of bond-disorder, ranging from standard ordered multimode mode-locking lasers to recently introduced glassy random lasers.

Glassy Random Laser and Experimental Measurement of Replica Symmetry Breaking

The investigation of the glassy behaviour of light in the framework of our theory is made possible by means of a newly introduced overlap parameter, the Intensity Fluctuation Overlap (IFO) measuring the correlation between intensity fluctuations of waves in random media. This order parameter allows to identify the laser transition in arbitrary physical regimes, with varying amount of disorder and non-linearity. In particular, in random media it allows for the identification of the glassy nature of some kind of random laser, in terms of emission spectra data, the only data so far accessible in random laser measurements. The model devised from first principles in whose framework the parameter is defined is the nonlinear phasor statistical mechanical model. This is a generalised complex spherical spin-glass model solvable in the mean-field approximation by Replica Symmetry Breaking theory. IFO measurements are possible in real experiments, recently leading to a validation of the RSB theory and a new characterisation of lasers in terms of spectral intensity fluctuations.

Interference of Coupling of Waves in Random Media

The light modes interaction network has to be inferred starting from data acquired in measurements, of spectra and correlations of phases and amplitudes of the light modes, and this inference problem is closely analogous to those in our other areas of application of statistical inference. Starting with the analysis of the inverse problem in statistical mechanical systems with continuous variables, like XY and complex phasors, our inference project is concerned with the bottom-up approach for studying statistical models for application to wave and optics. The parameters describing a given model system, like active links in the network system and external field affecting the system, are inferred using the data set which is made available by experimental or numerical measurements.

We adopt various inference techniques to reconstruct the interaction networks and to estimate the coupling values: mean-field approach, Pseudo Likelihood Maximization (PLM) with L1 and L2 regularizations and PLM with decimation. Such inverse problems for network reconstruction are considered on graphs of different kinds, from 2D and 3D nearest-neighbour lattices, Bethe and Erdos-Renyi sparse random graph to dense random graphs.

Facilities and Labs

S.Li.M. Lab @ Roma

People

leuzziLuca

Leuzzi

CNR Researcher

fabrizioantenucci_postdocFabrizio

Antenucci

Associate PostDoc

alessiamarruzzo_postdocAlessia

Marruzzo

Associate PostDoc

payaltyagi_postdocPayal

Tyagi

Associate PostDoc

Publications

  1. F Antenucci, Statistical Physics of Wave Interactions,  Springer (2016).
  2. P Tyagi, A Marruzzo, A Pagnani, F Antenucci, L Leuzzi, Regularization and decimation pseudolikelihood approaches to statistical inference in XY-spin models,  Physical Review B 94, 024203 (2016) Doi: 10.1103/PhysRevB.94.024203.
  3. F Antenucci, A Crisanti, M Ibáñez-Berganza, A Marruzzo, L Leuzzi, Statistical mechanics models for multimode lasers and random lasers.  Philosophical Magazine 96, 704-731 (2016) Doi: 10.1080/14786435.2016.1145359.
  4. F Antenucci, MI Berganza, L Leuzzi, Statistical physics of nonlinear wave interaction,  Physical Review B 92, 014204 (2015) Doi: 10.1103/PhysRevB.92.014204 .
  5. P Tyagi, A Pagnani, F Antenucci, M Ibanez Berganza, L Leuzzi, Inference for interacting linear waves in ordered and random media,  Journal of Statistical Mechanics: Theory and Experiment 2015 (5), Doi: 10.1088/1742-5468/2015/05/P05031
  6. F Antenucci, A Crisanti, L Leuzzi, Complex spherical 2+ 4 spin glass: A model for nonlinear optics in random media,  Physical Review A 91, 053816 (2015) Doi: 10.1103/PhysRevA.91.053816.
  7. F Antenucci, MI Berganza, L Leuzzi, Statistical physical theory of mode-locking laser generation with a frequency comb.  Physical Review A 91, 043811 (2015) Doi: 10.1103/PhysRevA.91.043811  .
  8. A Marruzzo, L Leuzzi, Nonlinear XY and p-clock models on sparse random graphs: Mode-locking transition of localized waves,  Physical Review B 91, 054201 (2015) Doi:10.1103/PhysRevB.91.054201 .
  9. F Antenucci, C Conti, A Crisanti, L Leuzzi, General phase diagram of multimodal ordered and disordered lasers in closed and open cavities.  Physical Review Letters 114, 043901 (2015) Doi: 10.1103/PhysRevLett.114.043901 .
  10. N Ghofraniha, I Viola, F Di Maria, G Barbarella, G Gigli, L Leuzzi, C Conti, Experimental evidence of replica symmetry breaking in random lasers,  Nature communications 6, 5 (2015) Doi:10.1038/ncomms7058 .
  11. F Antenucci, A Crisanti, L Leuzzi, The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra,  Scientific reports 5, 16792 (2015) Doi:10.1038/srep16792 .
  12. F Antenucci, M Ibanez Berganza, L Leuzzi, Statistical mechanical theory of mode-locked multimode lasers in closed cavity: determination of thresholds, spectra, pulse phase delays and pulse correlations.  Phys. Rev. A 91, 043811 (2014) Doi: 10.1103/PhysRevA.91.043811.

Other Selected Publications

  1. V Folli, A Puglisi, L Leuzzi, C Conti, Shaken Granular Lasers,  Physical Review Letters 108, 248002   (2012) Doi: 10.1103/PhysRevLett.108.248002.
  2. L Leuzzi, C Conti, V Folli, L Angelani, G Ruocco, Phase Diagram and Complexity of Mode-Locked Lasers: From Order to Disorder,  Physical Review Letters 102, 083901 (2009) Doi:10.1103/PhysRevLett.102.083901 .

Patents

Project

Statistical mechanics of disordered granular laser systems: theory and experiment,” funded by the Italian Ministry of Research (MIUR) program futuro in ricerca. (2010-2015),

NETADIS: Networks across disciplines, FP7-PEOPLE-2011-ITN Project (2011-2015).

Latest News

Jam session Nanotec... note di scienza su scala nanometrica

Lecce, 27 settembre 2019 - ex monastero degli Olivetani "CAR-T: l'alba di una nuova era"  con: Attilio Guarini (IRCCS Istituto Tumori “Giovanni Paolo II” di Bari)  introduce e modera: Marco Ferrazzoli (Ufficio Stampa CNR Roma) a cura di: Gabriella Zammillo 

Le CAR-T (Chimeric Antigens Receptor Cells-T) sono cellule modificate in laboratorio a partire dai linfociti T. Rappresentano una nuova strategia di cura che sfrutta il sistema immunitario per combattere alcuni tipi di tumore come linfomi aggressivi a grandi cellule e leucemie linfoblastiche acute a cellule B. Il prof Attilio Guarini, ematologo all’Istituto tumori Giovanni Paolo II di Bari, le definisce la “vis sanatrix naturae della antica medicina salernitana”, trattandosi del potenziamento dell’attività citotossica dei linfociti del paziente opportunamente ingegnerizzati per riconoscere e contrastare alcuni tipi di cellule tumorali.

 

Le CAR-T possono quindi essere definite un “farmaco vivente” proprio perché prodotto a partire dalle cellule dello stesso paziente aprendo così ad un nuovo mondo, considerato che i farmaci convenzionali sono prodotti da sostanze chimiche o, in alternativa, sono anticorpi prodotti in laboratorio dai biologi. Un trattamento estremamente complesso e costoso, non sempre applicabile, ma laddove possibile, dai risultati incoraggianti per le aspettative di vita. Lo sviluppo di nuove tecnologie per la produzione di CAR-T è parte integrante delle attività di ricerca condotte dal TecnoMed Puglia, il TecnoPolo per la Medicina di Precisione, coordinato da Giuseppe Gigli direttore del Cnr Nanotec di Lecce, e che nel suo nucleo fondatore vede anche l’IRCCS Istituto Tumori “Giovanni Paolo II” di Bari, il Centro di malattie neurodegenerative e dell’invecchiamento cerebrale dell’Università di Bari con sede presso l’Ospedale " G. Panico" di Tricase e la Regione Puglia.

 

L'evento apre la nuova stagione della rassegna divulgativa "Jam session Nanotec: note di scienza su scala nanometrica", un progetto Cnr Nanotec di Gabriella Zammillo, realizzato in collaborazione con Liberrima.

A condurre e moderare la serata, Marco Ferrazzoli, capo ufficio stampa dal CNR. Puoi scaricare la locandina da qui

Notte dei Ricercatori

Lecce, 27 settembre 2019

 

ex monastero degli Olivetani, ore 18:00 - 24:00

 
 Ritorna puntuale la Notte dei Ricercatori, l’evento più atteso dai tanti appassionati di scienza, ghiotti di conoscenza senza distinzione di età. E sempre più densa di contenuti è la partecipazione del @CnrNanotec che, per l’edizione 2019,  ha reso ancora più appetibile il calendario degli appuntamenti programmati all’interno del progetto europeo #ERN-Apulia  coordinato da Unisalento, tracciando un ideale tour tra gli intriganti campi del sapere che si dipana attraverso narrazioni, illustrazioni, laboratori hand-on, dibattiti, giochi per grandi e piccini e rappresentazioni teatrali. Clicca qui per il programma completo delle attività di Nanotec.   Per l'evento completo apri il link: www.laricercaviendinotte.it  
 

WELFARE E PARI OPPORTUNITA'

[vc_row][vc_column][vc_column_text]

September 14-22, 2019

 

Science coffee. Tre scienziate si raccontano: Luisa Torsi, Loretta L del Mercato, Eva Degl'Innocenti Bari - Fiera del Levante, 20 settembre 2019 - 17.30

Luisa Torsi, chimica, docente all’Università degli Studi di Bari e alla ABO Akademi University in Finlandia, tra le protagoniste della mostra della Fondazione Bracco . Loretta L del Mercato, biotecnologa - Ricercatrice CNR Nanotec. Esperta nell’uso delle nanotecnologie applicate in campo biomedico. Attualmente la ricerca si concentra sullo sviluppo di modelli cellulari di tumore del pancreas che consentano di testare l'efficacia di diverse terapie anticancro. Coordina il progetto ERC-StG “INTERCELLMED” finanziato dal Consiglio europeo della ricerca (Erc). Eva Degl'Innocenti, Direttrice MARTA di Taranto [/vc_column_text][/vc_column][/vc_row]