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Nonlinear Optical Systems at INPHYNI

Left: Liquid Crystal Cell for 1D turbulence (Bortolozzo & Residori). Centre, right: Hot vapour
(P. Azam, R. Kaiser) and photorefractive crystal (A. Eloy, M. Bellec & C. Michel) for 2D
turbulence. We also plan to study 1D turbulence in optical fibers
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Optical and BEC turbulence.

On the most basic level, optical and BEC turbulence is described by
Gross-Pitaevskii (a.k.a. NLS) equation:

i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = 0. (1)

where ψ is a complex scalar field.
GP equation (1) conserves two quantities with positive quadratic parts—
the total number of particles,

N =

∫
|ψ(x, t)|2dx , (2)

and the total energy,

H =

∫ [
|∇ψ(x, t)|2 +

1

2
|ψ(x, t)|4

]
dx , (3)
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Fluid properties of the GP system

There are strong parallels and analogies between the GP model and the
classical fluids, which could be understood by making the Madelung
transformation: ψ =

√
ρ e iφ . After this, the GP equation (1) becomes

very similar to an ideal fluid system with density ρ and velocity u = 2∇φ:

∂ρ

∂t
+∇ · (ρu) = 0, mass balance (4)

∂u

∂t
+ (u · ∇)u = −∇ρ

2

ρ
+∇

(
2
∇2√ρ
√
ρ

)
momentum balance (5)

Eq (4) it identical to the corresponding equation for classical fluids. Eq (5)
is very similar to the momentum balance equation for an ideal fluid with
pressure p = ργ , γ = 2. An immediate consequence is that the GP system
possesses fluid-like states including randomly moving vortices and waves,
i.e. vortex and wave turbulence. The last term in (5) represents the only
difference with the ideal fluid case; it is called “quantum pressure”.
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Important structures in hydro and Optical turbulence

1. Vortices: Important in hydro and Optical turbulence. They may have
arbitrary continuous solenoidal vorticity fields in classical turbulence. In
quantum turbulence, there are only point vortices with quantised
circulation. The quantum vortices are located at points where ψ = 0 and
the circulation Γ =

∮
C u(x) d` = 2

∮
C ∇θ d` = 2[θ]C = ±4π . (Multiply

charged vortices are structurally unstable.)
2. Waves: Sound waves and Kelvin waves on vortex filaments are common
for hydro and quantum turbulence. De Broglie (matter) waves exist in
Optical systems only.
Unlike classical vortices, quantum vortices can be created and annihilated
without dissipation. In doing so they emit sound. Vortex and wave
components can coexist, interact and create each other. Pure vortex and
pure wave turbulence arise in the strong and weak nonlinearity limits.
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Weak wave turbulence

Weak wave turbulence (WWT) refers to systems with random weakly
nonlinear waves. In WWT, waveaction spectrum nk = (L/2π)d〈|ψk|2〉
evolves according to the wave-kinetic equation (WKE):

∂tnk = 4π

∫
|nk1nk2nk3nk

[
1

nk
+

1

nk3

− 1

nk1

− 1

nk2

]
×

δ(k + k3 − k1 − k2) δ(ωk + ωk3 − ωk1 − ωk2) dk1dk2dk3, (6)

where ωk = k2.
Now the invariants are: N =

∫
nkdk and E =

∫
k2nkdk.
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Dual cascades

2D turbulence Weak wave turbulence

Standard (Fjortoft’1953) argument in 2D turbulence predicts a dual cascade

behaviour: energy cascades to low wavenumbers while enstrophy cascades to high

wavenumbers. Similar argument in WT predicts a forward cascade of energy and

an inverse cascade of waveaction (particles).

Direct E-cascade: “evaporation”.

Inverse N-cascade: Non-equilibrium condensation.
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Dual cascades in BEC

BEC Turbulence experiment of Navon et al.’2018.

Direct E-cascade: “evaporation”.

Inverse N-cascade: Non-equilibrium condensation.
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Kolmogorov-Zakharov spectra in the GP model

Stationary Kolmogorov-Zakharov (KZ) spectra nk ∼ kν are solutions of
WKE corresponding to the energy and the particle cascades:

νE = −d , yyy

and
νN = −d + 2/3, xxx .

KZ spectra are only meaningful if they are local, i.e. when the collision
integral in the original kinetic equation converges.
In 3D (d = 3) the inverse N -cascade spectrum is local, whereas the the
direct E -cascade spectrum is log-divergent at k → 0. As usual, the
log-divergence can be remedied by a log-correction,

nk ∼ [ln(k/kf )]−1/3 kνE ,

Sergey Nazarenko CNRS, INPHYNI (Insitute de Physique de Nice)Waves and Vortices in Optical and BEC Turbulence 9 / 27



KZ solutions of the GP system cont’d

The 2D case (d = 2) appears to be even more tricky. Formally the
N -cascade spectrum is local, but the N -flux is positive, in contradiction
with the Fjørtoft’s argument. For the E -cascade spectrum, the exponent
νE coincides with the one of the thermodynamic E -equipartition spectrum.
As a result, the KZ spectra are not realisable in the 2D GP turbulence.
Instead, “warm cascade” states are observed where the E and N k-space
fluxes are on background of a thermalised background.
The 1D case is described by a six-wave process because there are no
nontrivial four-wave (2→ 2) resonances in 1D systems with ωk ∼ k2.
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Direct and inverse cascades in 2d GPE

Figure: SN & M. Onorato (2006)

Both direct and inverse cascades are “warm”: their spectra are thermal

equipartition of energy with small corrections to accommodate E and N fluxes.
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Evolving 2d GP turbulence

Figure: SN & M. Onorato (2007)

Evolution scenario: 4-wave WT of de-Broglie waves → hydrodynamics of point

vortices → 3-wave WT of Bogolubov sound. Presently we are studying

self-similarity of the evolving spectrum.
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1D optical turbulence in liquid crystal (Laurie, Bortolozzo,
Nazarenko & Residori, 2009).

Light affects orientation of the LC molecules and, therefore, the refractive
index.

Figure: Left: LC cell setup; Right: the light intensity spectrum versus the WTT
prediction

2D turbulence LC-based experiment is planned.
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2D optical turbulence

Two 2D turbulence experiments are underway at INPHYNI using atomic vapour

and a photo-refractive crystal.
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2D optical vortices in atomic vapour (P. Azam, A. Griffin,
R. Kaiser, SN, 2020)
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Figure: Vortices in atomic vapour

Initial dark soliton breaks via a snaking instability into vortices
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2D optical vortices in atomic vapour (A. Eloy, M. Bellec,
A. Griffin, C. Michel, SN, 2021)

Figure: Vortices in photo-refractive crystal: flow past an a grid

Vortex production is maximized for an optimal spacing between obstacles.
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2D optical turbulence as a model for galaxy formation

A 2D turbulence experiment with nonlocal nonlinearity is planned at
INPHYNI using a liquid crystal.
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Evolving weak 3D BEC turbulence

Isotropic wave-kinetic equation after integrating out the angles and
passing from the wave number to the frequency variable:

d

dt
nω = ω−1/2

∫
min

(√
ω,
√
ω1,
√
ω2,
√
ω3

)
nωn1n2n3 (7)(

n−1
ω + n−1

1 − n−1
2 − n−1

3

)
δ(ω + ω1 − ω2 − ω3)dω1dω2dω3.

where ω = k2 is the wave frequency and nω(t) ∼ 〈|ψk |2〉 is the spectrum.
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Self-similar evolution in the inverse cascade range

Non-equilibrium condensation process.
(Semikoz and Tkachev 1995, Lacaze et al 2001)

Solution ”blows up” in finite time t∗. Shortly before t∗ they reported n = ω−x∗

x∗ = 1.23 > 1.16 = xKZ . Thermodynamic n = 1/ω is observed after t∗.
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Self-similar formulation in the inverse cascade range

B. Semisalov, V. Grebenev, S. Medvedev and SN (2021).
Let us seek solution of the WKE in a similarity form nω = τ af (η), where
η = ωτ−b, b = a− 1/2 > 0, τ = t∗ − t. Then WKE can be rewritten as

xf + ηf ′ =
1

b
St[f ], x =

a

b
(8)

Self-similarity of the 2nd type: a and b cannot be found from a
conservation law, but are solutions of a nonlinear eigenvalue problem.
Boundary conditions:
(1) f (η)→ ηx for η →∞.
(2) f (η)→ const for η → 0. This BC follows from previous numerics, but
it can be rigorously justified.
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Self-similar solution of WKE

xf + ηf ′ =
1

b
St[f ] (9)

Nonlinear eigenvalue problem: find x for which the following boundary
conditions are satisfied simultaneously.
(1) f (η)→ η−x for η →∞. (2) f (η)→const for η → 0.
It is much harder to solve the equation for f (η) than to solve WKE for
evolving n(k , t).
Relaxation of iterations. Best accuracy in terms of the sup-norm of the
relative mismatch: 4.7% for x∗ = 1.22.
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3D BEC turbulence study via 5123 DNS of the GP
equation.

V. Shukla and SN (2020).

The exponent 0.58 is close to the KE prediction of 0.46 (corresponding to

x∗ = 1.23). Late time: Condensate peak at low k and thermal energy

equipartition at high k.
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Fourth-order differential approximation to four-wave WKE

S. Thalabard, S. Medvedev and V. Grebenev (2021).

∂tn = ω1−d/2 ∂2

∂ω2

(
ωsn4 ∂2

∂ω2

(
1

n

))
. (10)

Here s depends on the particular 4-wave system, e.g. BEC, gravitational
waves,...
This can be transformed into a 4D autonomous dynamical system. The
nonlinear eigenvalue problem is to find x for which the following boundary
conditions are satisfied:
(1) power law with exponent x for large frequencies.
(2) sharp front propagating to the left at which there is no dissipation
(flux).
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Numerics of the initial value problem (Gravitational Wave
turbulence)

We see x∗ < 2/3 which is the KZ value.
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4D dynamical system (Gravitational Wave turbulence)

In 4D the solution to the nonlinear eigenvalue problem is again given by a global

biffurcation! Hopf → cycle → cycles via fold bifurcations (up to 5!) →
homoclinic cycle (with 2 other cycles hovering on background).
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4D dynamical system (3D BEC turbulence)

Similar to the GW case but Hopf moves to infinity and there are more
crazy cycle bifurcations en route to the Homoclinic cycle
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Summary

Nonlinear chaotic motions of waves and vortices optical media have
properties of turbulence, e.g. forward and inverse cascades.

Inverse cascade of the waveaction/particles is a process of nonequilibrium
condensation. Direct cascade of energy is a cooling process.

Optical turbulence allows to model important processes in quantum and
astropysical systems, including dark matter and galaxy formation.

2D optical turbulence has not been yet implemented yet, but the work is
underway. 1D turbulence was implemented in LC and fibers. 3D turbulence
- in BEC.

Major remaining theoretical problem: develop a kinetic description of the
vortex ”gas” and incorporate it into the WT theory.
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