The investigation of frontier physics mainly related to the interactions and coupling of light with matter both from a macroscopic point of view as well as at the single particle level. Collective coherent phenomena of condensates of Bose Einstein are studied in semiconductor materials exploiting quasiparticles generated by the strong coupling between light and excited states of matter to unravel a rich phenomenology of quantum fluids under superfluid or supersonic regimes, exploring the dynamics of vortex states, optically driven non-equilibrium condensates and the expanding or trapping of quantum gases. Other fields of interest are correlation of quantum states, and highly confined plasmon-polariton fields. Inorganic semiconductors and organic materials are investigated from a fundamental point of view as well as for new applicative concepts, like all-optical transistors, switches and logical gates.