Facilities & Labs

The scientific activities are focused on the physics and the chemistry of soft matter and on its applications in structured systems for advanced micro/nano-optics/photonics/fluidics.
New composite nanostructured materials are realized through bottom-up and hybrid bottom-up/top-down processes. Plasmonic materials, metamaterials and micro/nano structured materials, engineered by different methods, are fabricate and used in many fields, as energy harvesting, new sensing platforms and bio-medicine.
Our mission is to design, fabricate and characterize soft materials, including composites and hybrids, organic and biological. The manufacturing approach is twofold: firstly, nonlinear optics nano-microlithography is implemented in combination with micro-optical manipulation for realization of 2D / 3D structures made of polymer / nano-particles and integrable nano-structured micro-fluidic devices. Secondly, by a bottom-up approach, molecular self-assembling is exploited in order to get mesoscopic structures, from nanometer to micrometer scale, useful for optical and opto-fluidic applications.
Optical, structural and morphological properties are studied with the support of the thematic labs of our facility, where the most advanced investigation techniques are available: Ultrafast time-resolved IR-VIS multimodal non-linear optical spectroscopies, Ellipsometry, 2P Laser Scanning Confocal Microscopy integrated with an AFM system, Integrated Confocal Fluorescence Microscope / SNOM for simultaneous far and near field analyses, electronic microscopies (SEM, TEM), x-ray reflectometry (GID), optical micro-manipulation, SFA allowing for accurate measurements of inter-surfaces forces as small as 100 nN, with a Å-accuracy in the separation gap control, 250 sqm ISO 5 clean room supplied with thin film preparation and surface treatments equipment.
A large part of the research laboratories contributes to the CNR National User Facility Beyond-Nano – Polo di Cosenza and is accessible to external scientists by offering advanced research and technological services.


  1. Organic materials for devices. Synthesis of organic material and organometallic materials for optoelectronic. Complete setup for sample preparation and characterization of the following properties: Photoconductivity, Charge mobility, Photorefractivity
    Preparation and test of Organic Field-Effect Transistors (OFET).
  2. Soft Matter Nanofabrication. Bottom-Up approach. Molecular self assembly by Langmuir techniques Functional nanoparticle – liquid crystal composite materials. Periodic defect patterns in complex and anisotropic fluids. Nanoparticles patterning in anisotropic fluids. 3D anisotropic polymer structuring by TPP. Optical photoreduction of salts

Micro/nano fabrication

  1. 250 sqm ISO 5 clean room. Glass cells realization (>0.5 µm gap). Plasma cleaner, spin coater, hot plates, rubbing machine for surface treatments. Multiple source thermal PVD in glove box. Langmuir-Blodgett trough. Wet benches for chemical etching. DC Magnetron PVD.
  2. Laser nanolithography 3D 2P direct polymerization system Nanoscribe Photonic Professional GT. In-house developed photo-resists for 3D hybrid polymeric/metallic structures.
  3. Microfluidics and PDMS/SU-8 processing. UV mask lithography lab with Spin Coater, UV led insulator for photolithography, hot plate for hard/soft baking.
  4. Holographic Multibeam Optical Tweezing for microparticles manipulation/positioning

Structural and morphological characterizations lab

Scanning electron microscope SEM/ESEM high/low vacuum for conductive, dielectric, biological samples. Transmission electron microscope LEO 922 OMEGA EFTEM for materials science and biological research. BRUKER D8 Discover X-RAY reflectometer/diffractometer equipped with stationary anode source Cu, Euler cradle, Gobel Mirror, V-groove. WITec Scanning Near-field Optical Microscope alpha300 S including full AFM and confocal capabilities. V-VASE (Variable Angle Spectroscopic Ellipsometer) by Woollam for measurement of complex reflectance ratio in the spectral range 190 – 3300 nm

Non-Linear Optical Spectroscopies lab

Sum Frequency Generation Spectroscopy SFG-S with both vibrational resonance -VR and electronic-vibrational double resonance – DR for noninvasive investigations at molecular scale of optically accessible interfaces. The technique is able to investigate both the conformation and the average orientation of the molecules at the surface.
Time-Resolved Fluorescence Spectroscopy (< 1 ps). This ultrafast laser source is coupled with a time-resolved spectrofluorimeter composed by a Spectrograph (Czerny-Turner), a streak camera system (range 200-850nm) and a time-correlated photon counting in the NIR

Bio lab

Axio Observer Z1+SLM 710, inverted 2P laser scanning confocal microscope + IR pulsed Laser for organic and biological observation integrating a Bruker Catalyst AFM, for combined high-res AFM/Fluorescence analyses in air or fluid in several modes. Enables PicoForce-quality force measurements, epi-fluorescence, TIRF, FRET, FRAP.
Bruker MULTIMODE 8 SPM SYSTEM for contact and non-contact atomic force, lateral force and tapping mode magnetic force and electric force microscopies.
Surface Force Apparatus for probing nanomechanics and nanotribology of materials, complex fluids and surface coatings, allowing direct measurements of normal, adhesive and friction forces between solid surfaces

Latest News


    September 14-22, 2019


    Science coffee. Tre scienziate si raccontano: Luisa Torsi, Loretta L del Mercato, Eva Degl’Innocenti
    Bari – Fiera del Levante, 20 settembre 2019 – 17.30

    Luisa Torsi, chimica, docente all’Università degli Studi di Bari e alla ABO Akademi University in Finlandia, tra le protagoniste della mostra della Fondazione Bracco .
    Loretta L del Mercato, biotecnologa – Ricercatrice CNR Nanotec. Esperta nell’uso delle nanotecnologie applicate in campo biomedico. Attualmente la ricerca si concentra sullo sviluppo di modelli cellulari di tumore del pancreas che consentano di testare l’efficacia di diverse terapie anticancro. Coordina il progetto ERC-StG “INTERCELLMED” finanziato dal Consiglio europeo della ricerca (Erc).
    Eva Degl’Innocenti, Direttrice MARTA di Taranto

  • ICONS – A Symposium on Colloidal Nanocrystals

    October 10-11, 2019


    Cnr Nanotec Lecce


    The symposium focuses on colloidal semiconductor nanocrystals (also known as quantum dots), which are a central topic in materials science and nanotechnology nowadays. The event will bring together renowned scientists in this research field discussing on fundamentals and future directions of this promising class of materials. (more…)


     01 luglio 2019 – ore 14:15


    Cnr Nanotec Lecce


    Realizzato nell’ambito delle attività del progetto “TecnoMed Puglia – Tecnopolo per la medicina di precisione”, il meeting è dedicato allo studio delle malattie neurodegenerative: dai nuovi biomarcatori alle piu recenti modellizzazioni, per una migliore comprensione dei meccanismi di base e quindi per lo sviluppo di terapie sempre più ritagliate sul singolo paziente.

Job Openings