Plasmas for aerospace

Numerical codes implementing kinetic, PIC, DSMC and fluid dynamic approaches and including advanced state-to-state chemical-physical models are used for the investigation of plasmas of interest for aerospace applications, with particular attention to the simulation of non-equilibrium conditions in planetary entry conditions, dusty plasmas and plasma propulsion systems.

Hypersonic Flows

The reliable prediction of thermal loads on a spacecraft thermal protection systems during an high-speed entry in the atmosphere of Earth and other planets requires proper consideration of the non-equilibrium character of the flow, taking into account the elementary processes of atomic and molecular excitation, dissociation and ionization induced by collisions with heavy particles and electrons, in the state-to-state approach, extended also to more complex molecules as CO2. Radiation emitted by excited species gives a further contribution to the vehicle heat load, determined by photon transport equation.
Different non-equilibrium phenomena can be observed in the first part of the atmosphere, in very rarefied conditions, where the mean free path of particles is very long, comparable with the vehicle dimensions, needing particle simulations (DSMC). Other problems are related to the control and stability of hypersonic intercontinental flights based on SCRAMJET engine. Surface dielectric barrier discharge (DBD) is a promising technique to avoid the use of mechanical actuators, not adequate for hypersonic flights. Particle and fluid simulations have been done for modelling DBD’s. Different approaches have been used to investigate geometries, ranging from homogeneous systems to 3D flows coupling self-consistently Boltzmann and Master Equations, Radiative Transfer Equation (RTE), Boundary Layer or Navier-Stokes Equations.

» Plasmas in high enthalpy flows

» Radiation transport

» Boundary layer flow

» Plasma actuators

Space Plasmas

Plasma is the most diffuse matter state in the Universe, where conditions are often very extreme, from very low to very high density. This research line starting from fundamental aspects has different applications.

» Dusty Plasmas
The interaction of space dust in the surrounding plasma determines charging/growing dynamics and transport of dust grains. This research line deals with the dynamics of dust above airless body surfaces, rings and planetesimal formation.

» Nanoconfined Atoms and Molecules
Atomic species in high-density plasma, as met in star, are investigated by means of quantum theory. Modification of the atomic structure has relevant effects in thermodynamics and transport properties.

» Astrochemistry
The study concerns the chemical kinetics of the formation of the first molecules and the effect of the distribution of energy on the reaction mechanisms in space environment.

» Scientific space mission design
The advances in theoretical and numerical study of plasma turbulence require constant validation from in-situ observations. This calls for the progressive improvement and specific design of scientific space mission, that need to provide the observables necessary for the validation of the theory. NANOTEC_Rende actively participates in the design and realization of ESA and NASA space missions, such as ESA/THOR, ESA/Solar Orbiter and NASA/GRIPS.

Plasma for Space Propulsion

Electric thrusters (Hall-effect and helicon discharges) and plasma-assisted combustion (SCRAMJET) are important for space transportation (satellite guidance, orbit transfer and deep space exploration). Different numerical approaches (particle-based models and chemical kinetics) have been used to investigate non-equilibrium conditions typical of plasma propulsion systems.

» LOx/CH4 for planetary exploration

» SCRAMJET for hypersonic intercontinental flights

» Hall-effect thrusters for satellite positioning and orientation, planetary missions

» Helicon plasma thruster for less expensive propellant

Facilities & Labs

HPC Cluster and Services @ Bari





CNR Researcher




CNR Researcher



CNR Researcher




CNR Researcher



CNR Researcher



Associate Professor



CNR Researcher



Associate Professor



Associate Professor


  1. G. Colonna, G. D’Ammando, L. D. Pietanza, M. Capitelli, Excited-state kinetics and radiation transport in low-temperature plasmas, Plasma Physics and Controlled Fusion, 57, 014009, (2015); doi: 10.1088/0741-3335/57/1/014009
  2. R. Pepe, A. Bonfiglioli, A. D’Angola, G. Colonna, R. Paciorri, An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium, Computer Physics Communications, 196, 179–193, (2015); doi: 10.1016/j.cpc.2015.06.005
  3. G. D’Ammando, M. Capitelli, F. Esposito, A. Laricchiuta, L. D. Pietanza, G. Colonna , The role of radiative reabsorption on the electron energy distribution functions in H2/He plasma expansion through a tapered nozzle, Physics of Plasmas, 21, 093508, (2014); doi: 10.1063/1.4895481
  4. M. Tuttafesta, G. Colonna, G. Pascazio, Computing unsteady compressible flows using Roe’s flux-difference splitting scheme on GPUs, Computer Physics Communications, 184, 1497–1510, (2013); doi: 10.1016/j.cpc.2013.01.018
  5. M. Capitelli, G. Colonna, L. D. Pietanza, G. D’Ammando, Coupling of radiation, excited states and electron energy distribution function in non equilibrium hydrogen plasmas, Review in Spectrochimica Acta Part B: Atomic Spectroscopy, 83–84, 1–13, (2013); doi: 10.1016/j.sab.2013.03.004
  6. G. Colonna, L. D. Pietanza, G. D’Ammando, M. Capitelli, Self-consistent coupling of chemical, electron and radiation models for shock wave in Jupiter atmosphere, AIP Conference Proceedings, 1501, 1400, (2012); doi: 10.1063/1.4769703
  7. F. Taccogna, D. Pagano, F. Scortecci, A. Garulli, Three-Dimensional Plume Simulation of Multi-Channel Thruster Configuration, Plasma Sources Sci. Technol. 23, 065034, (2014) ISNN: 0963-0252; doi: 10.1088/0963-0252/23/6/065034
  8. F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Kinetic simulations of plasma thrusters, Plasma Source Sci. and Technol., 17, 024003, (2008) ISNN: 0963-0252; doi: 10.1088/0963-0252/17/2/024003
  9. I.Armenise, E.V.Kustova, On different contributions to the heat flux and diffusion in non-equilibrium flows, Chemical Physics, 428, 90-104, (2014); doi: 10.1016/j.chemphys.2013.11.003
  10. I. Armenise, P. Reynier and E. Kustova, Advanced Models for Vibrational and Chemical Kinetics Applied to Mars Entry Aaerothermodynamics, Journal of Thermophysics and Heat Transfer, 30, 705-720, (2016); doi: 10.2514/1.T4708


HALL: Sistema di propulsione al plasma per la crescita dell’industria aerospaziale pugliese, Puglia FESR (2007-2013)

APULIA SPACE: Esperti nell’uso di tecnologia abilitanti nel settore dello spazio (2014-2016)

Latest News

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics



Castello Carlo V, Lecce 27 -31 Maggio 2019


The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.


TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.


Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio:

Link video di presentazione Tecnomed:

Link video dichiarazione Michele Emiliano:

Alessandro Polini, si aggiudica l'LushPrize2018

Alessandro Polini, si aggiudica l'LushPrize2018

Berlino, 16 novembre 2018 

Alessandro Polini , giovane ricercatore presso l’Istituto di Nanotecnologia del Consiglio nazionale delle ricerche (Cnr-Nanotec) di Lecce, si è aggiudicato il Lush Prize 2018 categoria 'Giovani ricercatori', il premio che incoraggia le idee che promuovono la sperimentazione non animale.

Il giovane salentino ha visto così gratificare il suo studio basato sull’utilizzo di modelli 'organ-on-a-chip' altamente sofisticati per capire i meccanismi patologici alla base della Sclerosi Laterale Amiotrofica (SLA). Formatosi nel campo delle biotecnologie mediche, bioingegneria e nanotecnologie, anche con importanti esperienze internazionali -dal Lawrence Berkeley National Laboratory in California all'Harvard Medical School in Massachusetts per approdare poi alla Radboud University in Olanda- Alessandro Polini è rientrato in Italia per proseguire gli studi relativi ai sistemi 'organ-on-a-chip' grazie alla piattaforma tecnologica TecnoMED, il 'Tecnopolo di nanotecnologia e fotonica per la medicina di precisione' nato presso il Cnr-Nanotec di Lecce da un progetto finanziato da Regione Puglia, Cnr e Miur...

Comunicato Stampa CNR Intervista ad Alessandro Polini, vincitore del Lush Prize 2018 con il progetto ‘organ-on-a-chip’