Plasma technologies for materials & surfaces

Plasma surface engineering embraces a large range of processes aimed to drastically change the surface properties of materials preserving the bulk ones. This includes for instance corrosion protective coatings, barrier layers for food packaging, surface hydrophobization/hydrophilization, enhanced surface dyebility/printability or adhesion. In particular plasma-assisted deposition can be used to produce films on a solid material by promoting chemical reactions at the plasma/substrate interface. Indeed, by using sacrificial layers/substrates free standing nano-films can be produced. The processes can be performed by using both low and atmospheric pressure plasmas in direct and remote approach, injecting the film precursors in gas, vapor and aerosol form.

Plasma reactors design

Low pressure plasma reactor design involves matching of sample/chamber size, gas flow rate/pumping speed, electrodes potential distribution and power sources. Furthermore, often heating/chilling of electrodes or substrates is necessary, as well as bias, to control surface ion bombardment. Technologies implemented by plasmas are: PECVD, remote plasma MOCVD, sputtering, etching, plasma MBE.

Atmospheric pressure dielectric barrier discharge reactors for surface treatment of materials need a smart design, assembly and optimization. Reactors design and electrode configurations are tailored to address the requirements of specific plasma processes (e.g., deposition of thin films from precursors in vapor or aerosol form) and, importantly, the shape and dimension of the substrate to be treated. Atmospheric pressure reactors include also plasma jets, i.e., remote plasma sources in which the plasma is allowed to exit from the region where it is generated and to propagate in the external environment towards the substrate to be treated.

Plasma Surface Engineering

Strategies differ depending on the addressed surface property. Typically both low and atmospheric pressure plasma processes can be carried out.

Barrier and protective coatings consists in inorganic film (SiOx or SiNx) commonly deposited from organosilicon fed plasmas.

The control of polymer adhesion properties and alike (dyebility) can be reached by grafting of polar groups (oxygen or nitrogen containing ones) in plasma fed with O2, N2 or H2O.

Hydrophobization can be achieved either by PECVD of fluorocarbon and organosilicon coatings or by grafting of F-contaning functionalities (e.g., CF4-fed plasma)

Plasma processing of 3D materials and powders

Plasma treatment of complex three-dimensional (3D) porous materials (membranes, scaffold, fabrics, etc.) for fine tuning of the surface chemistry of the outer and inner regions of the substrates, while leaving the porous architecture intact. The activity includes also the plasma surface functionalization of powders and granules for several applications in the field of catalysis, absorbing materials, biomaterials, etc..

Strategies

Low pressure and atmospheric pressure PECVD, plasma grafting of functional groups and plasma sputtering of metal and metal/oxide carried out both in direct and remote approach. Reactors design and electrode configurations are fitted to the specific shape and dimension of the substrates to be treated.

Facilities & Labs

Plasma technology lab @URT Bari

PACVD @URT Bari

Space ship @URT Bari

PLASMATROLL @URT Bari

Atmospheric pressure parallel plate DBD @URT Bari

People

Maria_LosurdoMaria

Losurdo

CNR Director of Research

fabio_palumbor150Fabio

Palumbo

CNR Researcher

Antonella MilellaAntonella

Milella

Associate Researcher

Pietro-FaviaPietro

Favia

Associate Professor

Fiorenza_FanelliFiorenza

Fanelli

CNR Researcher

Francesco FracassiFrancesco

Fracassi

Associate Professor

Eloisa_SardellaEloisa

Sardella

CNR Researcher

Publications

  1. Fanelli, F , Mastrangelo, A.M, Fracassi, F., Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films,  Langmuir Volume 30, Issue 3, 28 January 2014, Pages 857-865, Doi: 10.1021/la404755n
  2. Rosa Di Mundo, Riccardo d’Agostino, and Fabio Palumbo, Long-Lasting Antifog Plasma Modification of Transparent Plastics,  ACS Appl. Mater. Interfaces, 2014, 6 (19), pp 17059–17066 DOI: 10.1021/am504668s
  3. Ilaria Trizio, Eloisa Sardella, Edda Francioso, Giorgio Dilecce, Vito Rizzi, Pinalysa Cosma, Michael Schmidtd, Mareike Hänsch, Thomas von Woedtke, Pietro Favia, Roberto Gristina, Investigation of air-DBD effects on biological liquids for in vitro studies on eukaryotic cells, Clinical Plasma Medicine, Volume 3, Issue 2, December 2015, Pages 62–71, DOI: 10.1016/j.cpme.2015.09.003

Latest News

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics

TERAMETANANO - IV ed.

 

Castello Carlo V, Lecce 27 -31 Maggio 2018

 

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.

 

TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.

 

Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio: http://rpu.gl/uChUl

Link video di presentazione Tecnomed: http://rpu.gl/Qqerm

Link video dichiarazione Michele Emiliano: http://rpu.gl/aJoee

Alessandro Polini, si aggiudica l'LushPrize2018

Alessandro Polini, si aggiudica l'LushPrize2018

Berlino, 16 novembre 2018 

Alessandro Polini , giovane ricercatore presso l’Istituto di Nanotecnologia del Consiglio nazionale delle ricerche (Cnr-Nanotec) di Lecce, si è aggiudicato il Lush Prize 2018 categoria 'Giovani ricercatori', il premio che incoraggia le idee che promuovono la sperimentazione non animale.

Il giovane salentino ha visto così gratificare il suo studio basato sull’utilizzo di modelli 'organ-on-a-chip' altamente sofisticati per capire i meccanismi patologici alla base della Sclerosi Laterale Amiotrofica (SLA). Formatosi nel campo delle biotecnologie mediche, bioingegneria e nanotecnologie, anche con importanti esperienze internazionali -dal Lawrence Berkeley National Laboratory in California all'Harvard Medical School in Massachusetts per approdare poi alla Radboud University in Olanda- Alessandro Polini è rientrato in Italia per proseguire gli studi relativi ai sistemi 'organ-on-a-chip' grazie alla piattaforma tecnologica TecnoMED, il 'Tecnopolo di nanotecnologia e fotonica per la medicina di precisione' nato presso il Cnr-Nanotec di Lecce da un progetto finanziato da Regione Puglia, Cnr e Miur...

Comunicato Stampa CNR Intervista ad Alessandro Polini, vincitore del Lush Prize 2018 con il progetto ‘organ-on-a-chip’