Plasma for Nuclear Fusion

The following research lines concern thermonuclear controlled fusion and in particular the most ambitious energy projects in the world today, ITER.

Fusion reactor materials

Determination by means of theoretical methods of structural properties and thermal properties of the materials of interest for nuclear fusion reactors.

Negative ion source for neutral beam injection

High power negative ion sources are used as Neutral Beam Injectors (NBI) to heat and drive current in thermonuclear fusion reactor. A negative ion source is required for the production of a high energy neutral beam because the neutralization efficiency for positive ions at 1MeV is negligibly small (compared to a  60% neutralization rate for negative ions).

Different particle-based models have been developed to simulated and optimize ion production, transport, extraction and acceleration through RF-inductive plasma discharge. In particular, electron transport across magnetic filter and negative ion extraction through the grid system is studied considering also alternative configuration in collaboration with RFX consortium and INFN

Plasma boundary physics

One of the characteristic features of the transition between plasma and an absorbing wall is the build-up of an electric space-charge potential at the plasma edge. In tokamaks, this boundary layer is interspersed with a magnetic field hitting wall at some angle. Thereby, the sheath has been shown to be composed of ‘magnetic’ and ‘Debye’ regions. The relatively large width of the magnetic sheath (hundreds of Debye lengths) permits particle interactions with surface-emitted material to be potentially significant and affecting particle, heat transport and the sheath parameters themselves. An adequate reduction of plasma heat and particle fluxes deposited on the plate can be achieved by means of the impurity radiation loss and recombination mechanisms. The present research activity studies by mean of particle-based models the plasma-wall transition region in tokamaks.

Facilities & Labs

P.LAS.M.I. Lab @ Bari




CNR Researcher



CNR Researcher



CNR Researcher


  1. F. Taccogna , P. Minelli , and N. Ippolito, Particle model of full-size ITER-relevant negative ion source, Rev. Sci. Instr., 87, 02B306, (2016) ISNN: 0034-6748; doi: 10.1063/1.4932396
  2. F. Taccogna, P. Minelli, S. Longo, Three-dimensional structure of the extraction region of a hybrid negative ion source, Plasma Sources Sci. and Technol., 22, 045019, (2013) ISNN: 0963-0252; doi: 10.1088/0963-0252/22/4/045019
  3. F. Taccogna, P Minelli, P Diomede, S Longo, M Capitelli, R Schneider, Particle modelling of the hybrid negative ion source, Plasma Sources Sci. Technol. 20, 024009 (2011) DOI: 10.1088/0963-0252/20/2/024009
  4. F. Taccogna, P. Minelli, S. Longo, M. Capitelli, R. Schneider, Modeling of a negative ion source III. Two-dimensional structure of the extraction region, Phys. Plasmas 17, 063502, (2010) ISNN: 1070-664X; doi: 10.1063/1.3431635
  5. D. Tskhakaya, S Kuhn, Y Tomita, K Matyash, R Schneider, F Taccogna, Self-Consistent Simulations of the Plasma-Wall Transition Layer, Contributions to Plasma Physics 48 (1‐3), 121-125 (2008) DOI: 1002/ctpp.200810021
  6. F. Taccogna, R Schneider, S Longo and M Capitelli, Modeling of a negative ion source. II. Plasma-gas coupling in the extractionregion, Physics of Plasmas 15 (10), 103502 (2008) DOI: 10.1063/1.2985854

Latest News

Disordered serendipity: a glassy path to discovery

A workshop in honour of Giorgio Parisi’s 70th birthday

September 19-21, 2018 - Roma

Sapienza University

With the occasion of celebrating Giorgio Parisi 70th birthday, the conference "Disordered serendipity: a glassy path to discovery" brings to Rome many among the world-leading experts in the field of complex systems. In order to properly represent the many fields of research where Giorgio Parisi gave a relevant contribution in his studies of disordered systems, the conference covers a broad spectrum of topics: from  fundamental and rigorous analysis of the statistical mechanics of disorder systems to applications in biology and computer science. These subjects are deeply interconnected since they are characterized by the presence of glassy behavior.

Il prof. Giorgio Parisi eletto presidente dell'Accademia dei Lincei


La più antica accademia del mondo ha un nuovo Presidente

Roma, 22 Giugno 2018

Siamo lieti di annunciare che il prof Giorgio Parisi, fisico della Università La Sapienza di Roma e Associato Cnr Nanotec, è il nuovo Presidente dell'Accademia Nazionale dei Lincei. A lui le nostre più vive congratulazioni e gli auguri di buon lavoro.


Costituzione del nuovo Ispc-Cnr

IV incontro - nuovo Istituto di Scienze del Patrimonio Culturale - CNR

Lecce, 20 aprile 2018

Aula Rita Levi Montalcini - ore 11:00

CNR NANOTEC c/o Campus Ecotekne

Per comunicazioni inerenti il processo di riorganizzazione potete scrivere a:

Tutte le informazioni che riguardano gli incontri, compresi gli indirizzi dello streaming, li trovate sul sito

Informazioni logistiche: