Gas discharges

Plasma sources based on discharges created by direct current, capacitively coupled radiofrequency, inductively coupled radiofrequency and microwaves are characterized by thermal non-equilibrium condition and therefore modelled by kinetic approaches: polynomial expansion, state-to-state and particle-based (Particle-in-Cell, Monte Carlo and Molecular Dynamics) methods.

gas discharges

Low- & High-Pressure Electric Discharges

In many technological plasmas formed in electrical discharges, the onset of non-equilibrium conditions significantly affect the EEDF (electron energy distribution function) determining large deviation from Maxwell distribution. The shape of the EEDF depends not only on the gas composition, but also on the level distribution. The synergy between electrons and excited states is investigated by a self-consistent approach, instead of the common assumption electron-impact process rates depending only on the applied reduced electric field (E/N). Self-consistent model demonstrate a very large impact in the post-discharge phase (E/N=0), where excited states transfer energy to free electrons through superelastic collisions, creating pronounced structures in the EEDF as peaks and plateaux.

Different gas discharge configurations (DC glow, DBD, RF capacitive and inductive, MW and helicon discharges) have been studied using multidimensional Particle-in-Cell/Monte Carlo Collisional (PIC-MCC) approach [1, 2]. The methodology allows the characterization of plasma-gas dynamics and kinetics in the self-consistent electromagnetic field taking into account volume and surface processes. Self-organized structures and non-equilibrium effects of electron distribution function, ion distribution function, molecular vibrational distribution function and production of hot atoms have been detected in the different cases. The same numerical technique has been applied to model zoomed region of the different discharges studied (sheath regions in ExB glow discharges, plume expansion, extraction region in RF-inductive negative ion source) and experimental diagnostic methods (electrostatic probe, laser photodetachment).

CO2 Destruction

The plasma assisted conversion of greenhouse gases, such as CO2, is collecting a large interest in the community both for its scientific relevance and also for technological applications in energetic and environment fields. CO2 dissociation is the first step in the global conversion process. Discharge mechanisms that promote dissociation through vibrational excitation can maximize the energy efficiency of the conversion.
This is a new research line and the results, due to their relevance in the modeling community, have been published as a Fast Track Communication in the Plasma Sources Science and Technology Journal

Nucleation and growth of nanoparticle in plasma

Laser ablation of solids in liquids is considered a very efficient technique for the synthesis of nanocrystals. The most important feature is the extreme confinement effect of liquid, i.e., the liquid restricts the expansion of the plasma plume. The extreme confined conditions and induced high-pressure region favor the formation of unusual metastable phases. These advantages allow the designer to combine selected solid targets and liquid to fabricate compound nanostructures with desired functions. The kinetic approach to model the nanoparticle nucleation and growth is based on the explicit sequential nanoparticle charging, ion adhesion and atom evaporation as the nanoparticle grows and as the plasma parameters (density and temperature) in which it is immersed change. Particle-based numerical models has been chosen to simulate this process

Facilities & Labs

HPC Cluster and Services @ Bari




CNR Researcher



CNR Researcher

ldpietanzaLucia Daniela


CNR Researcher



CNR Researcher



Associate Professor



Associate Professor


  1. N. Oudini, N. Sirse, F. Taccogna, A. R. Ellingboe and A. Bendib, Photo-detachment signal analysis to accurately determine electronegativity, electron temperature, and charged species density, Appl. Phys. Lett. 109, 124101 (2016); doi: 10.1063/1.4963138
  2. L. D. Pietanza, G. Colonna, V. Laporta, R. Celiberto, G. D’Ammando, A. Laricchiuta, and M. Capitelli, Influence of Electron Molecule Resonant Vibrational Collisions over the Symmetric Mode and Direct Excitation-Dissociation Cross Sections of CO2 on the Electron Energy Distribution Function and Dissociation Mechanisms in Cold Pure CO2 Plasmas, J.Phys. Chem. A, 120 (2016) 2614–2628, Doi: 10.1021/acs.jpca.6b01154
  3. L. D. Pietanza, G. Colonna, G. D’Ammando, A. Laricchiuta, M. Capitelli, Non equilibrium vibrational assisted dissociation and ionization mechanisms in cold CO2 plasmas, Chem. Phys. 468 (2016) 44, Doi: 10.1016/j.chemphys.2016.01.007
  4. L. D. Pietanza, G. Colonna, G. D’Ammando, A. Laricchiuta, M. Capitelli, Electron energy distribution functions and fractional power transfer in “cold” and excited CO2 discharge and post discharge conditions, Phys. Plasmas, 23 (2016) 013515  Doi: 10.1063/1.4940782
  5. G. Colonna, V Laporta, R Celiberto, M Capitelli and J Tennyson, Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and μs post-discharges: the role of electron molecule vibrational excitation scaling-laws, Plasma Sources Science and Technology, 24 (2015) 035004,  Doi: 10.1016/j.chemphys.2016.01.007
  6. G. D’Ammando, G Colonna, M Capitelli and A Laricchiuta, Superelasticcollisions under low temperature plasma and after glow conditions: A golden rule to estimate their quantitative effects, Phys. Plasmas 22 (2015) 034501, Doi: 10.1063/1.4913670
  7. M. Capitelli, G. Colonna, G. D’Ammando, V. Laporta, A. Laricchiuta, Non equilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas,ChemicalPhysics 438 (2014) 31-36, Doi: 10.1016/j.chemphys.2014.04.003
  8. M. Capitelli, G Colonna, G D’Ammando, V Laporta and A Laricchiuta, The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics, Phys. Plasmas 20 (2013) 101609, Doi: 10.1063/1.4824003
  9. F. Taccogna, Non-classical plasma sheaths: space-charge-limited and inverse regimes under strong emission from surfaces, Europ. Phys. J. D 68(7), 199-206, (2014); ISNN: 1434-6060; doi: 10.1140/epjd/e2014-50132
  10. M. Capitelli, I. Armenise, E. Bisceglie, D. Bruno, R. Celiberto, G. Colonna, G. D’Ammando, O. De Pascale, F. Esposito, C. Gorse, V. Laporta, A. Laricchiuta, Thermodynamics, Transport and Kinetics of Equilibrium and Non-Equilibrium Plasmas: A State-to-State Approach, Plasma Chemistry and Plasma Processing 32 (2012 427),doi:10.1007/s11090-011-9339-7


MWPECVD: Microwave Plasma Enhanced Chemical Vapor Deposition – Progetto Strategico ATS PS_136 (2007 – 2010)

Progetto Partenariati Regionali per l’Innovazione – PUGLIA Fesr (2007-2013)

APULIA SPACE: Esperti nell’uso di tecnologia abilitanti nel settore dello spazio,  PON03PE_00067_6, (2014-2016)

Latest News

La settimana del rosa digitale - 4^ed

La settimana del rosa digitale - 4^ed


Percorso di condivisione della carriera di scienziato-donna fatto attraverso esperimenti di estrazione di sostanze chimiche partendo dal cibo.

11 e 15 marzo 2019

Via Marconi,39 - Casamassima Bari 70010

Che “cavolo" di arcobaleno-mamme e scienza un viaggio alla scoperta di cio’ che Madre Natura ci insegna.

con Eloisa Sardella (CNR Nanotec) e Laura Rosso (PSP)

maggiori info:

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics


Castello Carlo V, Lecce 27 -31 Maggio 2019

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.


TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.


Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio:

Link video di presentazione Tecnomed:

Link video dichiarazione Michele Emiliano: