Elementary Processes in Plasmas

Elementary Processes in Plasmas are obtained at PLASMI Lab by accurate theoretical methods, accounting for the dependence on the excitation of internal degrees of freedom of atoms and molecules (rovibronic levels) and for the different classes of processes relevant to technological fields, from fusion applications (negative ion sources, divertor region in tokamak), aerospace (re)entry conditions and astrochemistry.

Atom-Molecule and Molecule-Molecule collisions

» atom-molecule collisions:
roto-vibrational energy exchange and dissociation

Elementary Processes_in Plasmas

(v,j) = initial rotational and vibrational quantum numbers
(v’,j’) = final rotational and vibrational quantum numbers

  1. Method: quasiclassical trajectory method (QCT)
  2. In house numerical codes suitable for parallel, distributed (computational grids) and hybrid (MPI+OpenMP) calculations
  3. Typical serial computational time: from 6 months to 20 years Optimized for Fermi Supercomputer at Cineca

results and work in progress

N+N2(v,j), O+O2(v,j), N+O2(v,j), O+N2(v,j)
N2+N2, O2+N2 (molecule-molecule, even semiclassical)

»Nuclear fusion (negative ion sources, divertor):
H+H2(v,j), D+D2(v,j)
H++H2(v,j) non-adiabatic, with charge transfer

He+H2(v,j), He+H2+(v,j), H+HeH+(v,j)

Electron – Molecule Collisions
Dynamics of electron-molecule collisions for resonant and non-resonant elementary processes:

»H2, O2, N2, NO and CO resonant vibrational excitation (RVE)

»H2, O2 dissociative attachment (DEA)

»O2 and N2 resonant dissociation

»H2 non-resonant excitation and dissociation

»O2 and N2 dissociative excitation

»O2 and N2 non-dissociative ionization

»BeH, Cs2 and CH non-resonant electronic excitation

Atom-Molecule Surface
The interaction of atoms and molecules with surfaces can lead to a great variety of physical and chemical processes including scattering, adsorption, atoms recombination and molecule dissociative adsorption.
Molecular Dynamic calculation of surface processes aims are:
Understanding the dynamics pathways underlying atom/molecule-surface interactions
Predicting the catalytic activity as a function of atomic/molecular properties and structural /chemical properties of the solid substrate
Determining an accurate database of collisional coefficients to be used in kinetic modelling of surface chemical processes

In addition it is possible to determine the influence on the reaction dynamics of:
» Surface Polymorph
» Surface Chemical Composition
» Surface Adsorption Site
» Surface Temperature
» Isotope Species

The phys4entry DB, designed and implemented by CNR IMIP Bari and SER&Practices spin-off of the University of Bari, is a database of state-selected dynamical information for elementary processes relevant to the state-to-state kinetic modeling of planetary-atmosphere entry conditions.

State-to-State Kinetics
State-to-state approach, proposed in the 70’s by the plasma chemistry group in Bari and nowadays widely used by the international plasma modeling community, can be considered as the most accurate tool for the investigation of chemical and thermal non-equilibrium under different conditions.
In the state-to-state kinetics, chemical processes are studied determining at the same time the distributions of internal levels of atoms and molecules, also accounting for the self-consistent coupling with the free electron kinetics.

Facilities & Labs

HPC Cluster and Services @ Bari




CNR Researcher



CNR Researcher



Associate Professor



CNR Researcher



Associate Researcher



Associate Professor



CNR Researcher


  1. V. Laporta, J. Tennyson, R. Celiberto, Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule, Plasma Sources Science and Technology, 25, 06LT02, (2016); doi:10.1088/0963-0252/25/6/06LT02
  2. A. Laricchiuta, R. Celiberto, M. Capitelli, G. Colonna, Calculation of Electron-Scattering Cross Sections Relevant for Hypersonic Plasma Modeling, Plasma Processes and Polymers, (2016); doi: 10.1002/ppap.201600131
  3. R. Celiberto, I. Armenise, M. Cacciatore, M. Capitelli, F. Esposito, P. Gamallo, R. K. Janev, A. Laganà, V. Laporta, A. Laricchiuta, A. Lombardi, M. Rutigliano, R. Sayós, J. Tennyson, J. M. Wadehra, Atomic and molecular data for spacecraft re-entry plasmas, Plasma Sources Science and Technology (Topical Review), 25, 033004, (2016); doi: 10.1088/0963-0252/25/3/033004
  4. R. Celiberto, K. L. Baluja, R. K. Janev, V. Laporta, Electron-impact dissociation cross sections of vibrationally excited He2+ molecular ion, Plasma Physics and Controlled Fusion, 58, 014024, (2016); doi: 10.1088/0741-3335/58/1/014024
  5. V. Laporta, R. Celiberto, J. Tennyson, Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O2 molecules, Physical Review A, 91, 012701, (2015); doi: 10.1103/PhysRevA.91.012701
  6. V. Laporta, D. A. Little, R. Celiberto, J. Tennyson, Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules, Plasma Sources Science and Technology, 23, 065002, (2014); doi: Doi: 10.1088/0963-0252/23/6/065002
  7. F. Esposito, C.M. Coppola, D. De Fazio, Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH + → H 2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods. The Journal of Physical Chemistry A. 2015;119,:12615−12626.
  8. M. Rutigliano, N. Sanna, A. Palma, Multiple approach to model unpaired spin density effects in H-ZSM5 zeolite with extra-framework O atom: H-abstraction reaction from methane, Computational and Theoretical Chemistry, 1074 (2015) 9-18
  9. I. Armenise, F. Esposito, “N2, O2, NO state-to-state vibrational kinetics in hypersonic boundary layers: The problem of rescaling rate coefficients to uniform vibrational ladders”, Chemical Physics, Vol.446, 2015, pp.30-46, DOI: 10.1016/j.chemphys.2014.11.004
  10. M. Rutigliano, D. Santoro, M. Balat-Pichelin, Hydrogen atom recombination on tungsten at high temperature: Experiment and Molecular Dynamics Simulation, Surface Science 628 (2014), 66-75

Latest News

Disordered serendipity: a glassy path to discovery

A workshop in honour of Giorgio Parisi’s 70th birthday

September 19-21, 2018 - Roma

Sapienza University

With the occasion of celebrating Giorgio Parisi 70th birthday, the conference "Disordered serendipity: a glassy path to discovery" brings to Rome many among the world-leading experts in the field of complex systems. In order to properly represent the many fields of research where Giorgio Parisi gave a relevant contribution in his studies of disordered systems, the conference covers a broad spectrum of topics: from  fundamental and rigorous analysis of the statistical mechanics of disorder systems to applications in biology and computer science. These subjects are deeply interconnected since they are characterized by the presence of glassy behavior.



Il prof. Giorgio Parisi eletto presidente dell'Accademia dei Lincei


La più antica accademia del mondo ha un nuovo Presidente

Roma, 22 Giugno 2018

Siamo lieti di annunciare che il prof Giorgio Parisi, fisico della Università La Sapienza di Roma e Associato Cnr Nanotec, è il nuovo Presidente dell'Accademia Nazionale dei Lincei. A lui le nostre più vive congratulazioni e gli auguri di buon lavoro.


Costituzione del nuovo Ispc-Cnr

IV incontro - nuovo Istituto di Scienze del Patrimonio Culturale - CNR

Lecce, 20 aprile 2018

Aula Rita Levi Montalcini - ore 11:00

CNR NANOTEC c/o Campus Ecotekne

Per comunicazioni inerenti il processo di riorganizzazione potete scrivere a: infonuovoispc@cnr.it

Tutte le informazioni che riguardano gli incontri, compresi gli indirizzi dello streaming, li trovate sul sito http://www.ispc.cnr.it

Informazioni logistiche: goo.gl/ZieUad