Plasma Physics and Technologies

This research area deals with theoretical modelling, experimental applications and diagnostics of plasma.

Elementary Processes in Plasmas are studied by accurate theoretical methods, relating to different classes of processes relevant to many technological fields, from thermonuclear controlled fusion (negative ion sources, divertor region in tokamak), to aerospace (re)entry conditions and astro-chemistry. Thermodynamic and transport properties in equilibrium plasmas have been calculated for complex gas mixtures, of different atmospheres (Earth, Mars and Jupiter). Space Plasmas are typically in very extreme conditions, from very low to very high density: this is the case of dusty plasmas, which deals with the dynamics of dust above airless body surfaces, rings and planet formation. Electric thrusters (Hall-effect and helicon discharges) and plasma-assisted combustion (SCRAMJET) are important for space transportation (satellite guidance, orbit transfer and deep space exploration).

The study of the temporal and spatial evolution of Laser Induced Plasma in different environments by spectroscopic techniques gives the required knowledge useful for a wide range of application fields (e.g. chemical analysis applied to environment, cultural heritage, space, material processing). Theoretical investigations have been also dedicated to verify the assumption of local thermodynamic equilibrium (LTE), commonly considered for calibration-free LIBS.

Plasma sources based on discharges created by direct current, capacitively coupled radiofrequency, inductively coupled radiofrequency and microwaves are characterized by thermal non-equilibrium condition and are modelled by kinetic approaches: polynomial expansion, state-to-state and particle-based (Particle-in-Cell, Monte Carlo and Molecular Dynamics) methods. These plasmas are studied from an experimental point of view, employing different optical techniques for Advanced Non-Equilibrium Plasma Diagnostics.

In particular Microwave Plasmas are employed successfully for the growth of undoped nanocrystalline (NCD) and polycrystalline diamond (PCD) films, deposited by a microwave PECVD (MWPECVD) technique starting from gas mixtures of CH4 highly diluted (less than 5%) in Ar and H2, respectively.

Plasma surface engineering includes a large area of processes aimed to drastically change the surface properties of materials preserving the bulk ones. The processes can be performed by using both low and atmospheric pressure plasmas, in both direct and remote approach, injecting the film precursors in gas, vapor and aerosol form.

MWPECVD

Chemical vapor deposition (CVD) processes assisted by plasmas, commonly known as plasma assisted CVD (PACVD) or plasma enhanced CVD (PECVD), are versatile in the production of materials with properties needful…

Gas discharges

Plasma sources based on discharges created by direct current, capacitively coupled radiofrequency, inductively coupled radiofrequency and microwaves are characterized by…

Plasma for Nuclear Fusion

The following research lines concern thermonuclear controlled fusion and in particular the most ambitious energy projects in the world today, ITER. Fusion reactor materials

Determination by means of theoretical..

Elementary processes in plasmas

Elementary Processes in Plasmas are obtained at PLASMI Lab by accurate theoretical methods, accounting for the dependence on the excitation of internal degrees of freedom of atoms and molecules…

Thermal plasmas

Equilibrium (or LTE) plasmas are characterized, deriving thermodynamic, transport properties and equilibrium composition, in a wide range of pressure and temperatures, ranging from technological applications to planetary…

Plasmas for aerospace

Numerical codes implementing kinetic, PIC, DSMC and fluid dynamic approaches and including advanced state-to-state chemical-physical models are used for the investigation of plasmas of interest for aerospace applications…

Advanced Non-Equilibrium Plasma Diagnostic

In the last two decades a rapid increase in research on nonequilibrium atmospheric-pressure discharges has occurred.  Applications covers the fields of material science, plasma assisted combustion, plasma medicine…

Plasma technologies for materials & surfaces

Plasma surface engineering embraces a large range of processes aimed to drastically change the surface properties of materials preserving the bulk ones. This includes for instance corrosion protective coatings…

Laser induced plasma

When a laser radiation is focused on a sample (solid, liquid and gas), its electromagnetic energy is transformed in to electronic excitation (free electron, plasmons). If the laser energy exceeds a characteristic threshold…

Latest News

La settimana del rosa digitale - 4^ed

La settimana del rosa digitale - 4^ed

 

Percorso di condivisione della carriera di scienziato-donna fatto attraverso esperimenti di estrazione di sostanze chimiche partendo dal cibo.

11 e 15 marzo 2019

Via Marconi,39 - Casamassima Bari 70010

Che “cavolo" di arcobaleno-mamme e scienza un viaggio alla scoperta di cio’ che Madre Natura ci insegna.

con Eloisa Sardella (CNR Nanotec) e Laura Rosso (PSP)

maggiori info:

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics

TERAMETANANO - IV ed.

Castello Carlo V, Lecce 27 -31 Maggio 2019

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.

 

TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.

 

Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio: http://rpu.gl/uChUl

Link video di presentazione Tecnomed: http://rpu.gl/Qqerm

Link video dichiarazione Michele Emiliano: http://rpu.gl/aJoee