Quantum Fluid Dynamics

Polaritons are light-matter particles formed by a strong interaction between the electronic excited states in a semiconductor and the light field of a microcavity.
Recently, they have attracted particular attention for their capacity to undergo phase transition to a collective coherent state in a similar way to the standard Bose-Einstein condensation demonstrated in cold atoms.

In the past years we have observed an incredibly rich phenomenology of quantum effects in fluids of polariton condensates, spanning from superfluid flow and persistent currents to the observation of a complex and important dynamics of vortex formation, stability and movement. More recently, thanks to the easy way of controlling and manipulating polariton states, as well as their fast dynamics, we could also observe that polaritons can be used as the perfect test-bed for the study of quantum phenomena which are hard to observe in other systems.

The aim of this line is the control of the fluid dynamics of quantum gases of polaritons, which are solid state particle which flow in the plane of the device much like a classical fluid, but retaining exceptional  properties typical of the quantum realm. These include the control of the formation of vortices and their motion, fundamental understanding of the quantum turbulence and phase transitions, but also the possibility to implement such phenomena in future devices for all-optical logic. The optical setup to operate with quantum fluid of light is a laboratory in which the ultrafast spectroscopy is paired with techniques such as digital off-axis holography and second order correlations.


1. Our group observed for the first time the polariton backjet and its ultrafast dynamics, an unexpected penomenon consisting in the spectacular dynamical accumulation of the particles in a central spot quite denser and much times thinner than the originally created drop of polaritons, in  the time of few ps. Nature Communications (2015)


2. Our results on quantized vorticity include the achievement of the first direct excitation of an half-vortex state, consisting in the two spin components carrying a l=1 and l=0 vorticity, respectively,  and the observation of the 2D+t spiralling dynamics of the phase singularity in a weakly nonlinear regime.  Science Advances (2015)


3. We spatially resolved for the first time the sub-ps dynamics of directly excited Rabi oscillations, typical of such systems and consisting in the simultaneous excitation of the two polariton modes by the ultrafast laser pulse. This gives rise to a beating in the time domain, which is equivalent to an oscillating energy transfer between the photon and exciton field. Phys. Rev. Lett. 113, 226401 (2014)


4. Using a coherent control between two counter-polarized exciting pulses, it is possible to convert the intensity oscillations associated to the Rabi splitting into polarization oscillations.

In this way the emission from the sample results into a continuously changing polarization state, swirling between opposite polarizations in the time of approximately 1 ps (as the Rabi period), and slowly fading into a fixed state in a 10 ps (as the lower polaritons lifetime)  Light Sci. Appl. 4, e350 (2015) .


Facilities & Labs

Photonics Lab @Lecce




CNR Senior Reseacher



CNR PostDoc



Associate PostDoc



Associate PhD Student



CNR Researcher



CNR Technician




De Giorgi

CNR Technologist



Associate PhD Student



Associate PhD Student


  1. D. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez, D. Ballarini, Entanglement properties of quantum polaritons, Physical Review B, 93, 205302, (2016), ISSN: 1754-5692; doi: 10.1103/PhysRevB.93.205302
  2. L. Dominici, M. Petrov, M. Matuszewski, D. Ballarini, M. De Giorgi, D. Colas, E. Cancellieri, B. Silva Fernández, A. Bramati, G. Gigli, A. Kavokin, F. Laussy, D. Sanvitto, Real-space collapse of a polariton condensate, Nature Communications, 6, 8993, (2015), ISSN: 20411723; doi: 10.1038/ncomms9993
  3. L. Dominici, G. Dagvadorj, J. M. Fellows, S. Donati, D. Ballarini, M. De Giorgi, F. M. Marchetti, B. Piccirillo, L. Marrucci, A. Bramati, G. Gigli, M. H. Szymaska, D. Sanvitto, Vortex and half-vortex dynamics in a spinor quantum fluid of interacting polaritons, Science Advances, 1, e1500807, (2015), ISSN: 2375-2548; doi: 10.1126/sciadv.1500807
  4. L. Dominici, D. Colas, S. Donati, J.?P. Restrepo Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J.C. López Carreño, A. Bramati, G. Gigli, E. del Valle, F.P. Laussy, and D. Sanvitto, Ultrafast Control and Rabi Oscillations of Polaritons, Physical Review Letters, 113, 226401 (2014), ISSN: 0031-9007; doi: 0.1103/PhysRevLett.113.226401
  5. D. Colas, L. Dominici, S. Donati, A.A. Pervishko, T.C.H. Liew, I.A. Shelykh, D. Ballarini, M. de Giorgi, A. Bramati, G. Gigli, E. del Valle, F.P. Laussy, A.V. Kavokin, D. Sanvitto, Polarization shaping of Poincaré beams by polariton oscillations, Light Science & Applications, 4, e350 (2015), ISSN: 2047-7538; doi: 10.1038/lsa.2015.123
  6. H.S. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E. Galopin, A. Lemaître, I. Sagnes, J. Bloch, and A. Amo, Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Physical Review Letters, 114, 036402 (2015), ISSN: 0031-9007; doi: 10.1103/PhysRevLett.114.036402
  7. A. C. Berceanu, L. Dominici, I. Carusotto, D. Ballarini, E. Cancellieri, G. Gigli, M. H. Szymanska, D. Sanvitto, F. M. Marchetti, On multicomponent polariton superfluidity in the optical parametric oscillator regime, Physical Review B, 92, 035307 (2015), ISSN: 1098-0121; doi: 10.1103/PhysRevB.92.035307
  8. J.C. López Carreño, C. Sánchez Muñoz, D. Sanvitto, E. del Valle, F.P. Laussy, Exciting polaritons with quantum light, Physical Review Letters, 115, 196402 (2015), ISSN: 0031-9007; doi: 10.1103/PhysRevLett.115.196402
  9. E. Cancellieri, T. Boulier, R. Hivet, D. Ballarini, D. Sanvitto, M. H. Szymanska, C. Ciuti, E. Giacobino, A. Bramati, Merging of vortices and antivortices in polariton superfluids, Physical Review B, 90, 214518 (2014), ISSN: 1098-0121; doi: 10.1103/PhysRevB.90.214518

Other Selected Publications

  1. D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. De Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré,E. Giacobino, C. Ciuti, A. Bramati, G. Gigli, All-optical control of the quantum flow of a polariton condensate, Nature Photonics, 5, 610 (2011) , ISSN: 1749-4885; doi: 10.1038/nphoton.2011.211
  2. A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E Giacobino, C. Ciuti, A. Bramati, Polariton Superfluids Reveal Quantum Hydrodynamic Solitons, Science, 332, 1167 (2011), ISSN: 1095-9203; doi: 10.1126/science.1202307


POLAFLOW: Polariton condensates: from fundamental physics to quantum based devicesStarting Grant ,FP7 – IDEAS – ERC-2012-StG, panel PE2 (2012-2017)

Latest News

Disordered serendipity: a glassy path to discovery

A workshop in honour of Giorgio Parisi’s 70th birthday

September 19-21, 2018 - Roma

Sapienza University

With the occasion of celebrating Giorgio Parisi 70th birthday, the conference "Disordered serendipity: a glassy path to discovery" brings to Rome many among the world-leading experts in the field of complex systems. In order to properly represent the many fields of research where Giorgio Parisi gave a relevant contribution in his studies of disordered systems, the conference covers a broad spectrum of topics: from  fundamental and rigorous analysis of the statistical mechanics of disorder systems to applications in biology and computer science. These subjects are deeply interconnected since they are characterized by the presence of glassy behavior.



Il prof. Giorgio Parisi eletto presidente dell'Accademia dei Lincei


La più antica accademia del mondo ha un nuovo Presidente

Roma, 22 Giugno 2018

Siamo lieti di annunciare che il prof Giorgio Parisi, fisico della Università La Sapienza di Roma e Associato Cnr Nanotec, è il nuovo Presidente dell'Accademia Nazionale dei Lincei. A lui le nostre più vive congratulazioni e gli auguri di buon lavoro.


Costituzione del nuovo Ispc-Cnr

IV incontro - nuovo Istituto di Scienze del Patrimonio Culturale - CNR

Lecce, 20 aprile 2018

Aula Rita Levi Montalcini - ore 11:00

CNR NANOTEC c/o Campus Ecotekne

Per comunicazioni inerenti il processo di riorganizzazione potete scrivere a: infonuovoispc@cnr.it

Tutte le informazioni che riguardano gli incontri, compresi gli indirizzi dello streaming, li trovate sul sito http://www.ispc.cnr.it

Informazioni logistiche: goo.gl/ZieUad