Quantum Fluid Dynamics

Polaritons are light-matter particles formed by a strong interaction between the electronic excited states in a semiconductor and the light field of a microcavity.
Recently, they have attracted particular attention for their capacity to undergo phase transition to a collective coherent state in a similar way to the standard Bose-Einstein condensation demonstrated in cold atoms.

In the past years we have observed an incredibly rich phenomenology of quantum effects in fluids of polariton condensates, spanning from superfluid flow and persistent currents to the observation of a complex and important dynamics of vortex formation, stability and movement. More recently, thanks to the easy way of controlling and manipulating polariton states, as well as their fast dynamics, we could also observe that polaritons can be used as the perfect test-bed for the study of quantum phenomena which are hard to observe in other systems.

The aim of this line is the control of the fluid dynamics of quantum gases of polaritons, which are solid state particle which flow in the plane of the device much like a classical fluid, but retaining exceptional  properties typical of the quantum realm. These include the control of the formation of vortices and their motion, fundamental understanding of the quantum turbulence and phase transitions, but also the possibility to implement such phenomena in future devices for all-optical logic. The optical setup to operate with quantum fluid of light is a laboratory in which the ultrafast spectroscopy is paired with techniques such as digital off-axis holography and second order correlations.

Highlights:

1. Our group observed for the first time the polariton backjet and its ultrafast dynamics, an unexpected penomenon consisting in the spectacular dynamical accumulation of the particles in a central spot quite denser and much times thinner than the originally created drop of polaritons, in  the time of few ps. Nature Communications (2015)

Immagine1

2. Our results on quantized vorticity include the achievement of the first direct excitation of an half-vortex state, consisting in the two spin components carrying a l=1 and l=0 vorticity, respectively,  and the observation of the 2D+t spiralling dynamics of the phase singularity in a weakly nonlinear regime.  Science Advances (2015)

Immagine2

3. We spatially resolved for the first time the sub-ps dynamics of directly excited Rabi oscillations, typical of such systems and consisting in the simultaneous excitation of the two polariton modes by the ultrafast laser pulse. This gives rise to a beating in the time domain, which is equivalent to an oscillating energy transfer between the photon and exciton field. Phys. Rev. Lett. 113, 226401 (2014)

Immagine3

4. Using a coherent control between two counter-polarized exciting pulses, it is possible to convert the intensity oscillations associated to the Rabi splitting into polarization oscillations.

In this way the emission from the sample results into a continuously changing polarization state, swirling between opposite polarizations in the time of approximately 1 ps (as the Rabi period), and slowly fading into a fixed state in a 10 ps (as the lower polaritons lifetime)  Light Sci. Appl. 4, e350 (2015) .

H44

Facilities & Labs

Photonics Lab @Lecce

People

daniele_sanvittoDaniele

Sanvitto

CNR Senior Reseacher

lorenzo_dominiciLorenzo

Dominici

CNR PostDoc

francesco_todiscoFrancesco

Todisco

Associate PostDoc

suarezDaniel

Suarez

Associate PhD Student

dario_ballariniDario

Ballarini

CNR Researcher

paolo_cazzatoPaolo

Cazzato

CNR Technician

gianfrateAntonio

Gianfrate

milen_degiorgiMilena

De Giorgi

CNR Technologist

Viso_UomoAntonio

Fieramosca

Associate PhD Student

Viso_UomoDavide

Caputo

Associate PhD Student

Publications

  1. D. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez, D. Ballarini, Entanglement properties of quantum polaritons, Physical Review B, 93, 205302, (2016), ISSN: 1754-5692; doi: 10.1103/PhysRevB.93.205302
  2. L. Dominici, M. Petrov, M. Matuszewski, D. Ballarini, M. De Giorgi, D. Colas, E. Cancellieri, B. Silva Fernández, A. Bramati, G. Gigli, A. Kavokin, F. Laussy, D. Sanvitto, Real-space collapse of a polariton condensate, Nature Communications, 6, 8993, (2015), ISSN: 20411723; doi: 10.1038/ncomms9993
  3. L. Dominici, G. Dagvadorj, J. M. Fellows, S. Donati, D. Ballarini, M. De Giorgi, F. M. Marchetti, B. Piccirillo, L. Marrucci, A. Bramati, G. Gigli, M. H. Szymaska, D. Sanvitto, Vortex and half-vortex dynamics in a spinor quantum fluid of interacting polaritons, Science Advances, 1, e1500807, (2015), ISSN: 2375-2548; doi: 10.1126/sciadv.1500807
  4. L. Dominici, D. Colas, S. Donati, J.?P. Restrepo Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J.C. López Carreño, A. Bramati, G. Gigli, E. del Valle, F.P. Laussy, and D. Sanvitto, Ultrafast Control and Rabi Oscillations of Polaritons, Physical Review Letters, 113, 226401 (2014), ISSN: 0031-9007; doi: 0.1103/PhysRevLett.113.226401
  5. D. Colas, L. Dominici, S. Donati, A.A. Pervishko, T.C.H. Liew, I.A. Shelykh, D. Ballarini, M. de Giorgi, A. Bramati, G. Gigli, E. del Valle, F.P. Laussy, A.V. Kavokin, D. Sanvitto, Polarization shaping of Poincaré beams by polariton oscillations, Light Science & Applications, 4, e350 (2015), ISSN: 2047-7538; doi: 10.1038/lsa.2015.123
  6. H.S. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E. Galopin, A. Lemaître, I. Sagnes, J. Bloch, and A. Amo, Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Physical Review Letters, 114, 036402 (2015), ISSN: 0031-9007; doi: 10.1103/PhysRevLett.114.036402
  7. A. C. Berceanu, L. Dominici, I. Carusotto, D. Ballarini, E. Cancellieri, G. Gigli, M. H. Szymanska, D. Sanvitto, F. M. Marchetti, On multicomponent polariton superfluidity in the optical parametric oscillator regime, Physical Review B, 92, 035307 (2015), ISSN: 1098-0121; doi: 10.1103/PhysRevB.92.035307
  8. J.C. López Carreño, C. Sánchez Muñoz, D. Sanvitto, E. del Valle, F.P. Laussy, Exciting polaritons with quantum light, Physical Review Letters, 115, 196402 (2015), ISSN: 0031-9007; doi: 10.1103/PhysRevLett.115.196402
  9. E. Cancellieri, T. Boulier, R. Hivet, D. Ballarini, D. Sanvitto, M. H. Szymanska, C. Ciuti, E. Giacobino, A. Bramati, Merging of vortices and antivortices in polariton superfluids, Physical Review B, 90, 214518 (2014), ISSN: 1098-0121; doi: 10.1103/PhysRevB.90.214518

Other Selected Publications

  1. D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. De Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré,E. Giacobino, C. Ciuti, A. Bramati, G. Gigli, All-optical control of the quantum flow of a polariton condensate, Nature Photonics, 5, 610 (2011) , ISSN: 1749-4885; doi: 10.1038/nphoton.2011.211
  2. A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E Giacobino, C. Ciuti, A. Bramati, Polariton Superfluids Reveal Quantum Hydrodynamic Solitons, Science, 332, 1167 (2011), ISSN: 1095-9203; doi: 10.1126/science.1202307

Projects

POLAFLOW: Polariton condensates: from fundamental physics to quantum based devicesStarting Grant ,FP7 – IDEAS – ERC-2012-StG, panel PE2 (2012-2017)

Latest News

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics

TERAMETANANO - IV ed.

 

Castello Carlo V, Lecce 27 -31 Maggio 2018

 

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.

 

TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.

 

Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio: http://rpu.gl/uChUl

Link video di presentazione Tecnomed: http://rpu.gl/Qqerm

Link video dichiarazione Michele Emiliano: http://rpu.gl/aJoee

Alessandro Polini, si aggiudica l'LushPrize2018

Alessandro Polini, si aggiudica l'LushPrize2018

Berlino, 16 novembre 2018 

Alessandro Polini , giovane ricercatore presso l’Istituto di Nanotecnologia del Consiglio nazionale delle ricerche (Cnr-Nanotec) di Lecce, si è aggiudicato il Lush Prize 2018 categoria 'Giovani ricercatori', il premio che incoraggia le idee che promuovono la sperimentazione non animale.

Il giovane salentino ha visto così gratificare il suo studio basato sull’utilizzo di modelli 'organ-on-a-chip' altamente sofisticati per capire i meccanismi patologici alla base della Sclerosi Laterale Amiotrofica (SLA). Formatosi nel campo delle biotecnologie mediche, bioingegneria e nanotecnologie, anche con importanti esperienze internazionali -dal Lawrence Berkeley National Laboratory in California all'Harvard Medical School in Massachusetts per approdare poi alla Radboud University in Olanda- Alessandro Polini è rientrato in Italia per proseguire gli studi relativi ai sistemi 'organ-on-a-chip' grazie alla piattaforma tecnologica TecnoMED, il 'Tecnopolo di nanotecnologia e fotonica per la medicina di precisione' nato presso il Cnr-Nanotec di Lecce da un progetto finanziato da Regione Puglia, Cnr e Miur...

Comunicato Stampa CNR Intervista ad Alessandro Polini, vincitore del Lush Prize 2018 con il progetto ‘organ-on-a-chip’