Biomolecular Delivery

On the left: Transmission Electron Microscopy (TEM) characterization of PNIPAM magnetic nanobeads (inset: cartoon sketching the DOXO-loaded nanobeads); in the middle: TEM images of invagination of the KB cell membrane and formation of the endosome containing the PNIPAM–NBs after 24 h at 37 °C. On the right: Laser Scanning Confocal Microscopy image (overlay of fluorescence and transmission) of halloysite clay nanotubes uptaken by cancer cellls and (inset) TEM image of halloysite clay nanotubes.

The major goal in designing nanosystems as drug delivery vectors is to control the release of pharmacologically active agents and to achieve the site-specific action of drugs at a therapeutically optimal rate and dosage regimen. Targeting of the nanocarrier at the action site and shielding of the surface to reduce adsorption of non-specific proteins are crucial aspects for augmenting the therapeutic efficacy. In this respect, studies about interactions between drugs and serum protein are of particular interest. The strategy of “drug delivery vectors” which is widely applied to the medical field can be translated to phyto-therapy with the aim of developing sustainable antimicrobial protection of plants. Beyond nanosystems, surfaces can be functionalized to release antimicrobial agents on demand.


Inorganic nano-carriers for targeted therapy

Among inorganic nanostructures, our research efforts have focused on the design of several types of multifunctional nanoparticles (NPs), such as magnetic or metallic nanoparticles and halloysite nanotubes loaded with anticancer drugs or used directly as therapeutic tools. Superparamagnetic NPs can be guided with a magnetic field to deliver attached drugs, in addition to hyperthermia treatment. In silver and silver-coated silica NPs, the metallic domain induces cell death upon laser irradiation and reactive oxygen species generation.

Plasmonic NPs are a class of metallic nanomaterials that mediate Localized Plasmon Resonance (LPR), resulting in highly enhanced electromagnetic fields (eg light) in their immediate neighbourhood. This can be exploited for triggering localised drug release or directly to kill diseased tissues via heat release, while sparing adjacent healthy tissues (Plasmonic PhotoThermal Therapy, PPTT). The possibility to deliver NPs to a tumor site and then exploit the efficient conversion of Near Infrared (NIR) light to heat opens up a new “drug-free” cancer therapy.

Another class of novel inorganic biocompatible nanomaterials for biomolecular delivery are Halloysite clay Nanotubes which are composed of double layered aluminosilicate minerals with a hollow tubular structure in the submicron range and are capable of entrapping and releasing drugs within the inner lumen.

NPs can deliver a variety of biomolecules; of particular relevance is the gene delivery process that allows the introduction of foreign DNA or RNA into host cells for therapy avoiding immune response in the patient. In this frame, we have combined NPs and a human whole genomic DNA exploiting the possibility to realize applications for Plasmonic Gene Therapy (PGT). The interaction between NPs and nucleic acids of different lengths have been studied by using analytical techniques such as Scanning Electron-Microscopy (SEM), Electrophoretic mobility assay and Zeta-potential measurements.

Stimuli-responsive organic carriers

(Left slide) Schematic illustration of pH-responsive nanogels exploited for the controlled uptake and release of hydrophobic and cationic solutes (Middle) Confocal laser scanning microscopy images of leukemic cells after 3 hours of incubation with DOX-PECs (red) and IM-CH-FITC PCL NPs (green). Cell nuclei were counterstained with DAPI (blue). Scale bars: 10 μm. (Right slide) Schematic illustration of couple delivery.

The next generation of nanomaterials for bio-engineered applications also employ stimuli-responsive organic carriers. These stimuli-responsive organic carriers experience structural variations in response to small changes of environmental conditions, thus triggering the release of the encapsulated/adsorbed drugs.

To date a variety of polymers sensitive to physical and biochemical stimuli, including light, pH, temperature, electric and magnetic fields, chemical analytes and biological components (i.e. protease) have been developed. Induced changes in a polymer chain’s conformation upon applying a certain stimulus lead to some consequences such as the increase/reduction of both pore size and permeability to analytes, as well as significant changes in volume and hydrophilic/hydrophobic properties. Nanoparticles sensitive to magnetic fields can be functionalized by lipids for different biomedical applications. Indeed, release systems based on stimuli-responsive polymers can be exploited to control molecular recognition, including capture, release and detection of biomolecules.

Drug-protein interactions

Human serum albumin (HSA) is the most abundant protein in the bloodstream, and constitutes up to 60% of the total serum proteins. One of its most extraordinary properties is the ability to bind reversibly a large variety of endogenous and exogenous ligands, such as hormones, fatty acids, and a great number of therapeutic drugs. In particular, it increases the solubility of hydrophobic drugs in plasma and modulates their delivery to cells. Consequently, binding to this protein controls the free, active concentration of a drug, provides a reservoir for a long duration of action, and strongly affects its absorption, distribution, metabolism and excretion. Many experimental and computational techniques can be applied to determine the binding site and binding constant for the interaction of drugs with HSA. In particular, fluorescence spectroscopy offers many advantages (high sensitivity, rapidity and ease of implementation) over conventional techniques such as affinity and size exclusion chromatography, dialysis and ultrafiltration. By measuring the quenching of the HSA intrinsic fluorescence, the accessibility of quenchers to the fluorophore groups of HSA can be estimated. This information can help to predict the binding mechanisms of drugs. Other experimental techniques (such as optical absorption and EPR spectroscopy), and computational methods (such as molecular docking and MD simulations) can be used to gain insights into the binding location and affinity of various compounds to HSA, and on their competitive association in the presence of other physiological ligands.

Examples of ligands for HSA (left side), structure of the protein (middle) and emission spectra at growing amount of HSA complexes (right).
Examples of ligands for HSA (left side), structure of the protein (middle) and emission spectra at growing amount of HSA complexes (right).

Delivery systems for sustainable antimicrobial protection of plants

The aim is the development of innovative phyto-therapy based on nano-carriers to efficiently reach the target and to amplify the agrochemical effect. A new Spray-drying synthesis was exploited to produce pure and thermodynamically stable nano-crystals with high quantitative rate. The synthetized nano-crystals have optimal drugs loading efficiency and biocompatible nature. The potential targeting in infected plants was supported by phytotoxic and localization assay on model plants. The nano-crystals showed good mobility in xylem vessels, without any effect on the plant tissues nor uptake by the vegetable cells. In particular this nanotechnology strategy was applied to control the Xylella Fastidiosa (Xf) infection that causes the Olive Quick Decline Syndrome, denoted CoDiRO, an high impact disease observed in Salento (research activities in collaboration with the Institute for Sustainable Plant Protection). The phyto-therapy design is supported by the research and development of new diagnostic protocols based on untargeted metabolomics approach trough advanced mass spectrometry.

TEM image of CaCO3 nano-crystals obtained by Spray Dryer process (A). Confocal image of xylema vessels of model plant that was exposed to nano-crystals (B); the white arrows indicate the xylematic flux direction. TEM image of Xylella fastidiosa cells exposed to nano-crystals (C); the red arrow indicates the internalized crystal and the blue one shows the drastic alteration of bacteria wall structure.

Plasma deposition of drug delivery coatings

Plasma-based strategies can be used to produce drug delivery coatings in order to reduce bacteria attachment and proliferation and/or to stimulate specific cell-tissue responses. Due to the variety of devices, implants, materials in general, as well as causative bacteria and field of application, plasma-assisted strategies can be tailored to specific product needs. Composite coatings containing inorganic (metals and metal oxides) or organic (synthetic drugs and biomolecules) agents dispersed in an organic matrix can be deposited in one step, and used for drug delivery applications. When a barrier film is deposited on top of such coatings, the direct contact between the drug and the medium is hampered and the release is reduced. To control the rate of release over time, a further plasma deposition of a barrier film can be performed to slow down the diffusion of the antimicrobial agent in the water media. Low pressure and atmospheric pressure plasmas can be used for this purpose.

Plasma sputter deposition of silver containing drug-delivery coatings. Top: picture of a plasma discharge and sketch of the plasma process aimed at obtaining a silver containing coating coated by a barrier film to control drug delivery rate; middle: TEM  images of 1% and 3% of silver containing coatings; bottom: SEM picture of Staphylococcus epidermis grown on a plasma deposited coating without silver (bottom-left) and with silver and barrier coating (bottom-right)
Plasma sputter deposition of silver containing drug-delivery coatings. Top: picture of a plasma discharge and sketch of the plasma process aimed at obtaining a silver containing coating coated by a barrier film to control drug delivery rate; middle: TEM images of 1% and 3% of silver containing coatings; bottom: SEM picture of Staphylococcus epidermis grown on a plasma deposited coating without silver (bottom-left) and with silver and barrier coating (bottom-right)

Facilities & Labs

Bio Lab @ Lecce

Characterization Lab @ Lecce

Micro/nano fabrication @ Rende

Structural and morphological characterizations lab @ Rende

Bio Lab @ Rende

Bio Lab @ URT Bari




CNR Researcher



CNR Researcher



CNR Researcher



Associate Professor

Ilaria_PalamaIlaria E.


CNR Researcher



CNR Researcher



Associate Researcher



Associate Researcher



Associate Professor



CNR Researcher



CNR Researcher



CNR Researcher



CNR Technician



CNR Technician


De Luca

Associate Professor

francesca BaldassarreFrancesca


Associate PostDoc



Associate PostDoc



Associate Professor


De Sio

Associate PostDoc



CNR Researcher



Associate Professor



CNR PostDoc


La Deda

Associate Professor



Associate PostDoc



Associate Professor


  1. L. Ricciardi, S. Pirillo, D. Pucci, M. La Deda, Emission solvatochromic behavior of a pentacoordinated Zn(II) complex: A viable tool for studying the metallodrug-protein interaction, Journal of Luminescence, 151, 138-142, (2014), ISSN: 0022-2313; doi: 10.1016/j.jlumin.2014.02.020
  2. M. Mortato, S. Argentiere, G.L. De Gregorio, G. Gigli, L. Blasi, Enzyme-responsive multifunctional surfaces for controlled uptake/release of (bio)molecules, Colloids and Surfaces B: Biointerfaces, 123, 89-95, (2014) ISSN: 0927-7765; doi: 10.1016/j.colsurfb.2014.08.034
  3. I.E. Palamà, B. Cortese, S. D’Amone, G. Gigli, mRNA delivery using non-viral PCL nanoparticles, Biomaterials Science, 3, 144-151, (2015), ISSN: 2047-4830; doi: 10.1039/c4bm00242c
  4. I.E. Palamà, A.M.L. Coluccia, G. Gigli, Uptake of Imatinib-loaded polyelectrolyte nanocomplexes by BCR-ABL+ cells: a long-acting drug delivery strategy for targeting oncoprotein activity, Nanomedicine, 9 (14), 2087-2098, (2014), ISSN: 1743-5889; doi: 10.2217/NNM.13.147
  5. L. del Mercato, M. M. Ferraro, F. Baldassarre, S. Mancarella, V. Greco, R. Rinaldi, S. Leporatti, Biological Applications of LbL Multilayer Capsules: From Drug Delivery to Sensing, Advances Colloids and Interface Science, 207, 139–154, (2014), ISSN: 0001-8686; doi: 10.1016/j.cis.2014.02.014 (Invited Review, Special Issue Helmuth Mohwald)
  6. I.E. Palamà, B. Cortese, S. D’Amone, V. Arcadio, G. Gigli, Couple delivery of Imatinib Mesylate and Doxorubicin with nanoscaled polymeric vectors for a sustained downregulation of BCR-ABL in Chronic Myeloid Leukemia, Biomaterials Science, 3, 361-372, (2015), ISSN: 2047-4830; doi: 10.1039/c4bm00289j
  7. A. Quarta, D. Bernareggi, F. Benigni, E. Luison, G. Nano, S. Nitti, C. Cesta, L. Di Ciccio, S. Canevari, T. Pellegrino, M. Figini, Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo, Nanoscale, 7 (6) 2336-2351, (2015), ISSN: 2040-3364; doi: 10.1039/c4nr04426f
  8. C. Dionisi, N. A.N. Hanafy, C. Nobile, M. L. de Giorgi, R. Rinaldi, S. Casciaro, Y. M. Lvov, S. Leporatti, Halloysite Clay Nanotubes as Carriers for Curcumin: Characterization and Application, IEEE Transactions On Nanotechnology, 15, 720-724, (2016), ISSN: 1536125X; doi: 10.1109/TNANO.2016.2524072.
  9. S. Mancarella, V. Greco, F. Baldassarre, D. Vergara, M. Maffia, S. Leporatti, Polymer-coated Magnetic Nanopartocles for Curcumin Delivery to Cancer Cells, Biosci, 15 (10), 1365-1374, (2015), ISSN: 1616-5187; doi: 10.1002/mabi.201500142. (Awarded by Frontispiece Colour Issue)
  10. A. Zacheo, A. Quarta, A. Zizzari, A. G. Monteduro, G. Maruccio, V. Arima, G. Gigli, One step preparation of quantum dot-embedded lipid nanovesicles by a microfluidic device, RSC Advances, 5, 98576-98582, (2015), ISSN: 2046-2069; doi: 10.1039/c5ra18862h
  11. F. Palumbo, G. Camporeale, Y.W. Yang, J. S. Wu, E. Sardella, G. Dilecce, C. D. Calvano, L. Quintieri, L. Caputo, F. Baruzzi, P. Favia Direct deposition of Lysozyme embedded Bio-composite Thin films, Plasma Processes and Polymers 12-11, 1302-1310 (2015), ISSN: 1612-8869; doi: 10.1002/ppap.201500039
  12. L. De Sio, G. Caracciolo, F. Annesi, T. Placido, D. Pozzi, R. Comparelli, A. Pane, L. Curri, A. Agostiano, R. Bartolino, Plasmonics Meets Biology through Optics Nanomaterials, ISSN: 20794991; doi:10.3390/nano50x000x (2015)
  13. L. De Sio, G. Caracciolo, T. Placido, D. Pozzi, R. Comparelli, F. Annesi, M. L. Curri, A. Agostiano, R. Bartolino, Applications of nanomaterials in modern medicine, Rendiconti Lincei. Scienze Fisiche e Naturali ISSN: 20374631; doi: 10.1007/s12210-015-0400-y (2015).
  14. L. De Sio, F. Annesi, T. Placido, R. Comparelli, V. Bruno, A. Pane, G. Palermo, L. Curri, C. Umeton, R. Bartolino Templating gold nanorods with liquid crystalline DNA J. Optics 17, 025001 (2015), ISSN: 2040-8978; doi: 10.1088/2040-8978/17/2/025001
  15. B. Rizzuti, R. Bartucci, L. Sportelli, R. Guzzi, Fatty acid binding into the highest affinity site of human serum albumin observed in molecular dynamics simulation, Archives of Biochemistry and Biophysics, 579, 18-25 (2015), ISSN: 0003-9861; doi: 10.1016/
  16. M. Pantusa, R. Bartucci, B. Rizzuti, Stability of trans-resveratrol associated with transport proteins, Journal of Agricultural and Food Chemistry, 62, 4384-4391 (2014), ISSN: 0021-8561; doi: 10.1021/jf405584a
  17. E. Sardella, F. Palumbo, G. Camporeale, P. Favia, Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces; Materials 9(7), 515 (2016) ISSN: 1996-1944; doi:10.3390/ma9070515.
  18. V. Vergaro, P. Papadia, S. Leporatti, S. De Pascali, F. P. Fanizzi, G. Ciccarella Synthesis of biocompatible polymeric nano-capsules based on calcium carbonate: A potential cisplatin delivery system. Journal Of Inorganic Biochemistry, 153, 284-292, (2015). ISSN: 0162-0134; DOI: 10.1016/j.jinorgbio.2015.10.014.
  19. F. Baldassarre, F. Foglietta, V. Vergaro, N. Barbero, A. L. Capodilupo, L. Serpe, S. Visentin, A. Tepore, G. Ciccarella Photodynamic activity of thiophene-derived lysosome-specific dyes. Journal Of Photochemistry And Photobiology B-Biology, 158, 16-22, (2016) ISSN: 1011-1344; DOI: 10.1016/j.jphotobiol.2016.02.013.

Other selected Publications

  1. S. Argentiere, L. Blasi, G. Morello, G. Gigli, A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes, Journal of Physical Chemistry C, 115, 16347-16353, (2011), ISSN: 1932-7447; doi: 10.1021/jp204954a
  2. S. Deka, A. Quarta, R. Di Corato, A. Riedinger, R. Cingolani, T. Pellegrino, Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumor cells, Nanoscale, 3 (2), 619-629 (2011), ISSN: 2040-3364; doi: 10.1039/c0nr00570c
  3. V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Cytocompatibility and Uptake of Halloysite Clay Nanotubes, Biomacromolecules, 11, 820–826, (2010), ISSN: 1525-7797; doi: 10.1021/bm9014446 (One of Most Cited Papers in Biomacromolecules in 2011, Highly Cited Paper, according to Web of Science Thompson Reuters)
  4. S. Argentiere, L. Blasi, G. Ciccarella, A. Cazzato, G. Barbarella, R. Cingolani, G. Gigli, Smart surfaces for pH controlled cell staining, Soft Matter, 5, 4101-4103, (2009), ISSN: 1744-683X; doi: 10.1039/b914277k
  5. S. Deka, A. Quarta, R. Di Corato, A. Falqui, L. Manna, R. Cingolani, T. Pellegrino, Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles, Langmuir, 26 (12), 10315-10324, (2010), ISSN: 0743-7463; doi: 10.1021/la1004819
  6. I.E. Palamà, S. Leporatti, E. de Luca, N. Di Renzo, M. Maffia, C. Gambacorti-Passerini, R. Rinaldi, G. Gigli, R. Cingolani, A.M.L. Coluccia, Imatinib-Loaded Polyelectrolyte Microcapsules for Sustained Targeting of Bcr- Abl+ Leukemia Stem Cells, Nanomedicine Future Medicine Ltd, 5(3), 419-431 (2010), ISSN: 1743-5889; doi: 10.2217/NNM.10.8
  7. Vergaro, F. Scarlino, C. Bellomo, R. Rinaldi, D. Vergara, M. Maffia, F. Baldassarre, G. Giannelli X. Zhang, Y. M. Lvov and S. Leporatti, Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells, Advanced Drug Delivery Review, 63, 847-864, (2011), ISSN: 0169-409X; doi: 10.1016/j.addr.2011.05.007 (Invited Review)
  8. F. Baldassarre, V. Vergaro, F. Scarlino, F. De Santis, G. Lucarelli, A. della Torre, G. Ciccarella, R. Rinaldi, G. Giannelli, S. Leporatti, Polyelectrolyte Capsules as Carriers for Growth Factor Inhibitor Delivery to Hepatocellular Carcinoma, Macromol Biosci, 12, 656-665 (2012), ISSN: 1616-5187; doi: 10.1002/mabi.201100457
  9. V. Vergaro, Y.M. Lvov, S. Leporatti, Halloysite Clay Nanotubes for Resveratrol Delivery to Cancer Cells, Biosci., 12 (9), 1265-1271, (2012), ISSN: 1616-5187; doi: 10.1002/mabi.201200121
  10. M. Kastellorizios, G.P.A.K. Michanetzis, B. R. Pistillo, S. Mourtas, P. Klepetsanis, E. Sardella, R. d’Agostino, Y. F. Missirlis, S. G. Antimisiaris Haemocompatibility improvement of metallic surfaces by covalent immobilization of heparin-liposomes, Int. J. Pharm. 2012, 432-1, 91-98; doi: 10.4236/jbnb.2013.44A004


Cancer Therapy with Silver Nanoparticles. E. Palamà, M. Pollini, F. Paladini, G. Accorsi, A. Sannino and G. Gigli. US 4182.3000. 2013 and WO 3000. 2014.

Abstract: A novel approach in cancer therapy based on the cytotoxic effect of silver nanoparticles on cancer cells, without any deleterious effect on normal cells, has been developed.


Process for the production by plasma of nanometric thickness coatings allowing controlled release of silver ions of other elements, or of molecules of biomedical interest, from solid products, and products thus coated, R. D’agostino, P. Favia, F. Fracassi, E. Sardella, C. Costagliola, A. Mangone. Patent WO2013021409-A1: E. Sardella, P. Favia et al. WO2013021409 (2013)

Abstract: Process for the production by plasmochemical deposition of a film having a nanometric thickness, optionally multilayered, permitting carrying out in a controlled, uniform and long lasting way, release of substances of interest in a surrounding medium containing liquids, from a substrate including the substance to be released as micro/nano particles, or from a layer deposited on the substrate including the substance to be released as micro/nano particles, or from a layer of the substance to be released deposited on the substrate, or from a substrate that is the substance to be released optionally in the form of particles. The substances to be released can be metals, compounds having anti-bacterial properties, biologically active molecules such as drugs, hormones, vegetable extracts, peptides, lipids, protides and glucides. The layer with the substance to be released, be it organic or inorganic, is obtained by plasmochemical deposition optionally having a structure similar to polyethylene oxide (PEO) or polyethylene glycol (PEG), called PEO-like polymers, constituted, in a variable percentage da ethylene oxide units (-CH2CH2O-, EO); barrier film is obtained by depositing by plasma at least one organic or inorganic layer, optionally with a PEO-like structure, wherein chemical composition, degree of crosslinking and thickness are adjustable by the plasmo chemical deposition process parameters, and allow to adjust the release of the active substance according to specific needs. The structures on which the above said films can be deposited are: medical-surgical devices, common handworks, structures known as scaffolds, and the above defined substances to be released themselves. The invention also relates to medical-surgical devices, common handworks and scaffolds coated by a substrate and barrier layer, as well as to biologically active substances coated by at least one barrier layer.


Synthesis of nano-sized CaCO3 particles by spray dryer. Ciccarella, V. Vergaro. EP2796412 (A1) (2013).

Abstract: Method for preparing calcium carbonate comprising the steps of mixing an aqueous solution of NaHCO3 and an aqueous solution of CaCl2 , then atomizing them in a pre-heated air flow, thereby obtaining calcium carbonate in powder form and sodium chloride. The calcium carbonate obtained comprises nanoparticles smaller than 100 nm.


  1. NABIDIT – NAno-BIotecnologie per DIagnostica e sviluppo di Terapie innovative; Regional project APQ – Reti di Laboratori Pubblici di Ricerca (2010-2012)
  2. MAGNIFYCO – Magnetic nanocontainers for combined hyperthermia and controlled drug release; Project ID: 228622 – FP7-NMP (2009-2013)
  3. IT-LIVER – Strategy to Inhibit TGF-b In Liver Disease; FP7 ITN-Marie Curie (2012-2016).
  4. Nanocarriers for Cancer Therapy; Bilaterale Ministero Affari Esteri (2008-2011).
  5. MAAT – Nanotecnologie molecolari per la salute dell’uomo e dell’ambiente; Pon MIUR, PON02_00563_3316357 (2012-2015)
  6. LIPP – Laboratorio di ricerca Industriale Pugliese dei Plasmi; Regional project APQ – Reti di Laboratori Pubblici di Ricerca (2010-2012)
  7. RINOVATIS – Rigenerazione di tessuti nervosi ed osteocartilaginei mediante innovativi approcci di Tissue Engineering, PON MIUR PON02_00563_3448479, (2013-2015)

Latest News

Technology Trasfer in Nanotechnology

Technology Transfer in Nanotechnology: Challenges and Opportunity

Lecce, 18/19 ottobre 2018

CNR NANOTEC c/o Campus Ecotekne

JRC in collaboration with the National Research Council (Cnr) is organising a workshop on Technology Transfer in Nanotechnology,

which will take place in CNR Nanotec (Lecce, Italy) on 18 and 19 October. This workshop is organised in the framework of the TTO-CIRCLE initiatives.   The aim of this event is to explore how technology transfer activities can be used as a mechanism to help EU industry, particularly Start-ups and SMEs, and Government in deploying and adopting Nano-technology. Practical examples will be presented to illustrate the potential of technology transfer in this area.   The workshop will gather technology providers, industry executives, technology transfer officers, policy makers and financial intermediaries to share experiences and lessons learned. One of the key objectives is to discuss policy implications at all levels that could help accelerating the adoption of Nanotechnology by the European manufacturing industry. More informations: Download Locandina

Nanotechnology Transfer Day

26 Luglio 2018 - Lecce

CNR NANOTEC c/o Campus Ecotekne Siglato l’accordo lo scorso maggio tra CNR NANOTEC e Pairstech Capital Management, ha preso il via la collaborazione con PhD TT per la valutazione della ricerca

E’partita la collaborazione con PhD TT per la valorizzazione della ricerca sulla base dell’accordo siglato lo scorso Maggio tra CNR NANOTEC e Pairstech Capital Management, società di gestione patrimoniale che fornisce agli investitori istituzionali e privati un insieme di veicoli di investimento, al fine di valorizzare i risultati della ricerca svolta all'interno dell'Istituto.

Giovedì 19 Luglio dalle ore 11 alle ore 14 nella sede del CNR Nanotec di Lecce si è tenuto un incontro sul trasferimento tecnologico nel settore delle nanotecnologie applicate al settore biomedicale.

L’evento è stato organizzato dall’ufficio di Trasferimento Tecnologico del CNR Nanotec che ha inaugurato con questa giornata un ciclo di eventi mirato a presentare agli attori dell’ecosistema dell’innovazione nel settore delle nanotecnologie i vari modelli e alcune best practice di trasferimento tecnologico. In questa prima giornata il dott. Heber Verri e la dott.ssa Paola Urbani hanno presentato il nuovo modello di trasferimento tecnologico PhD TTãIndex Model.

PhD TT è una realtà italiana completamente indipendente specializzata in trasferimento tecnologico, è un acceleratore organizzato per il Go to Venture Practice, orientata al mondo delle Lifes Sciences.

PhD TT ha sviluppato un nuovo modello di trasferimento tecnologico: il PhD TT©INDEX MODEL dedicato alla generazione di valore dell'innovazione, focalizzato alla riduzione dei rischi delle opportunità di investimento a sostegno della ricerca.

I ricercatori intervengono attivamente nell'analisi iniziale di fattibilità e nella costituzione della futura società (start-up), con l'obiettivo di attrarre capitale di rischio utile a sostenere la fase del trasferimento tecnologico nella visione della "Research for go-to-market".

Il modello PhD TT nasce da un bisogno del mercato, quello di far dialogare due mondi estremamente diversi tra loro: il mondo della ricerca e il mondo degli investimenti.

PhD TT supporta tutte le attività in collaborazione con il TTO - CNR Nanotec con un team di lavoro esperto e grazie a un comitato scientifico-economico qualificato.

In occasione dell'evento del 19/7 u.s. al CNR Nanotec di Lecce, PHD TT ha presentato il proprio track record, dove si sono potuti valutare in dettaglio i casi di successo di intervento del PhD TT©INDEX MODEL.

  Comunicato Stampa Photo Gallery

Disordered serendipity: a glassy path to discovery

A workshop in honour of Giorgio Parisi’s 70th birthday

September 19-21, 2018 - Roma

Sapienza University

With the occasion of celebrating Giorgio Parisi 70th birthday, the conference "Disordered serendipity: a glassy path to discovery" brings to Rome many among the world-leading experts in the field of complex systems. In order to properly represent the many fields of research where Giorgio Parisi gave a relevant contribution in his studies of disordered systems, the conference covers a broad spectrum of topics: from  fundamental and rigorous analysis of the statistical mechanics of disorder systems to applications in biology and computer science. These subjects are deeply interconnected since they are characterized by the presence of glassy behavior.