Statistical Mechanics

We study disordered and frustrated systems such as spin-glasses, structural glasses and random photonics models by means of advanced methods in statistical mechanical of disordered and complex systems, namely Replica Symmetry Breaking theory, Cavity method, Belief and Survey propagation, Supersymmetric path integral formulation of the dynamics (à la Martin-Siggia-Rose), Renormalization group approaches (on hierarchical lattice, on finite dimensional squared and cubic cells, on hierarchical models) and enhanced Monte Carlo methods for the numerical simulation of the dynamics both at and off-equilibrium.


By means of the above mentioned techniques we investigate phase transitions and states organisation in complex systems both at high dimensionality, where the mean-field approximation is exact) and in low dimension, where a phase transition is still present but it belongs to a different universally class. Phenomena studied in the recent years are the spin-glass transition and the low temperature replica symmetry breaking, the structural glass transition and of the organisation of the stable and metastable glassy states below the dynamic arrest transition, the random field Ising model transition, the Anderson localization.


Glassy and slowly relaxing systems. A glass can be viewed as a liquid in which a huge slowing down of the diffusive motion of the particles has destroyed its ability to flow on experimental timescales. The slowing down is expressed through the relaxation time, that is, generally speaking, the characteristic time at which the slowest measurable processes relax to equilibrium. Cooling down from the liquid phase, the slow degrees of freedom of the glass former are no longer accessible and the viscosity of the undercooled melt grows several orders of magnitude in a relatively small temperature interval. As a result, in the cooling process, from some point on, the time effectively spent at a certain temperature is not enough to attain equilibrium: the system is said to have fallen out of equilibrium. Nature and characterization of this non-equilibrium glassy regime and of the glass transition are a challenging issue that stimulates deep theoretical work concerning frustrated systems in diverse representations. We work on the theoretical representation of the behavior of viscous liquids, structural glasses and spin-glasses, on the critical slowing down occurring near-by the dynamic arrest, on the aging dynamics, on the extension of glass theories beyond the limit of validity of mean-field approximation.


Inverse problem in statistical mechanics. Given a data set and a model with some unknown parameters, the inverse problem aims to find the values of the model parameters that best fit the data. We focus on systems of interacting elements, in which the inverse problem concerns the statistical inference of the underling interaction network and of its coupling coefficients from observed data on the dynamics of the system. Versions of this problem are encountered in physics, biology, social sciences and finance, neuroscience (just to cite a few), and are becoming more and more important due to the increase in the amount of data available from these fields. A standard approach used in statistical inference is to predict the interaction couplings by maximizing the likelihood function. This technique, however, requires the evaluation of the partition function that, in the most general case, concerns a number of computations scaling exponentially with the system size. Boltzmann machine learning approach uses Monte Carlo sampling to compute the gradients of the Log-likelihood looking for stationary points but this method is computationally manageable only for small systems. A series of faster approximations, such as naive mean-field, independent-pair approximation inversion of Thouless-Anderson-Palmer equations, small correlations expansion, adaptive TAP, adaptive cluster expansion or Bethe approximations have been developed in the last 15 years. These techniques take as input means and correlations of observed variables and most of them assume a fully connected graph as underlying connectivity network, or expand around it by perturbative dilution. In most cases, network reconstruction turns out to be not accurate for small data sizes and/or when couplings are strong or, else, if the original interaction network is sparse. A further method, substantially improving performances for small data, is the so-called Pseudo-Likelyhood Method (PLM), implemented with regularization or with decimation. We work on the analysis of the performances of the various inference methods, on their improvement and on their application to new problems.


Disordered protein states. The ordered structure of proteins is one of the basic paradigms of classical biology, and it provides an explanation for many aspects of their functioning. Nevertheless, in many cases proteins operate in environments far from equilibrium, or possess labile conformations that convert towards order only under particular conditions. Examples include protein folding/unfolding in the presence of temperature and pressure variations, or configuration reorganizations induced by ligand binding in intrinsically disordered proteins. The statistical properties of these ensembles of structures can be studied with sampling techniques based on classical molecular dynamics simulations.


Molecular networks. We are interested in characterizing emergent properties of large networks of interacting molecules of biological significance, e.g. proteins or nucleic acids, using equilibrium and non-equilibrium statistical mechanics methods. Our central goal is to understand what makes these networks optimal and in which precise sense, how the laws of physics limit their performance in such tasks as noise or information processing, and whether they can sustain collective effects similar to those that characterize more traditional systems studied in statistical physics. In turn, our hope is to gain insight about the evolution of the large-scale organization of the known molecular networks that govern cellular and multi-cellular activities.

Facilities and Labs

“Statistical mechanics and complex photonics” SMCP group



De Martino

CNR Researcher



CNR Researcher



CNR PostDoc



CNR PostDoc



CNR Researcher



Full Professor



CNR PostDoc



CNR Researcher



Full Professor


Ricci Tersenghi

Associate Professor


  1. A. Marruzzo, L Leuzzi, Multi-body quenched disordered XY and p-clock models on random graphs, Physical Review B 93, 094206 (2016) Doi: 10.1103/PhysRevB.93.094206 .
  2. F Antenucci, Statistical Physics of Wave Interactions, Springer (2016)
  3. J. L. Neira, B. Rizzuti, J. L. Iovanna, Determinants of the pKa values of ionizable residues in an intrinsically disordered protein, Archives of Biochemistry and Biophysics, 595, 1-16, (2016) doi: 10.1016/
  4. D De Martino et al, Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli, Phys Biol 13:036005 (2016) DOI: 10.1088/1478-3975/13/3/036005
  5. S Grigolon et al, Noise Processing by MicroRNA-Mediated Circuits: the Incoherent Feed-Forward Loop, Revisited, Heliyon 2:e00095 (2016) DOI: 10.1016/j.heliyon.2016.e00095
  6. Martirosyan et al, Probing the Limits to MicroRNA-Mediated Control of Gene Expression, PLOS Comp Biol 12(1): e1004715 (2016) DOI: 10.1371/journal.pcbi.1004715
  7. C Rainone, U Ferrari, M Paoluzzi, L Leuzzi, Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model, Physical Review E 92, 062150 (2015)DOI: 10.1103/PhysRevE.92.062150 .
  8. L Leuzzi, G Parisi, F Ricci-Tersenghi, JJ Ruiz-Lorenzo,Infinite volume extrapolation in the one-dimensional bond diluted Levy spin-glass model near its lower critical dimension, Physical Review B 91, 064202 (2015) DOI: 10.1103/PhysRevB.91.064202.
  9. A Crisanti, L Leuzzi, A simple spin model for three step relaxation and secondary processes in glass formers, Journal of Non-Crystalline Solids 407, 110-117 (2015) DOI: 10.1016/j.jnoncrysol.2014.07.048.
  10. FL Metz, G Parisi,  L Leuzzi, Finite-size corrections to the spectrum of regular random graphs: An analytical solution. Physical Review E 90, 052109 (2014)DOI: 10.1103/PhysRevE.90.052109 .
  11. F Antenucci, A Crisanti, L Leuzzi, Small-cluster renormalization group in Ising and Blume-Emery-Griffiths models with ferromagnetic, antiferromagnetic, and quenched disordered magnetic interactions,  Physical Review E 90, 012112 (2014) DOI: 10.1103/PhysRevE.90.012112.
  12. F Antenucci, A Crisanti, L Leuzzi, Critical Study of Hierarchical Lattice Renormalization Group in Magnetic Ordered and Quenched Disordered Systems: Ising and Blume–Emery–Griffiths Models,  Journal of Statistical Physics 155, 909-931 (2014) DOI: 10.1 007/s10955-014-0977-z .
  13. FL Metz, L Leuzzi, G Parisi, Renormalization flow of the hierarchical Anderson model at weak disorder, Physical Review B 89, 064201 (2014) DOI: 10.1103/PhysRevB.89.064201
  14. A Crisanti, L Leuzzi, Large Deviations in Physics, Large Deviations in Disordered Spin Systems,  Springer, 135-160 (2014) .
  15. D De Martino et al. Inferring metabolic phenotypes from the exometabolome through a thermodynamic variational principle. New J Phys 16: 115018 (2014) DOI: 10.1088/1367-2630/16/11/115018
  16. M Figliuzzi et al, RNA based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 107:1011 (2014) Doi: 10.1016/j.bpj.2014.06.035
  17. A De Martino et al, Identifying all moiety conservation laws in genome-scale metabolic networks. PLOS ONE 9:e100750 (2014) Doi: 10.1371/journal.pone.0100750
  18. A Seganti et al. Searching for feasible stationary states in reaction net- works by solving a Boolean constraint satisfaction problem. Phys Rev E 89:022139 (2014) Doi: 10.1103/PhysRevE.89.022139

Other selected publications

  1. B. Rizzuti, V. Daggett, Using simulations to provide the framework for experimental protein folding studies, Archives of Biochemistry and Biophysics 531, 128-135, (2013) doi: 10.1016/
  2. M Figliuzzi et al, MicroRNAs as a selective channel of communication between competing RNAs. Biophys J 104:1203 (2013) DOI: 10.1016/j.bpj.2013.01.012
  3. A Seganti et al. Boolean constraint satisfaction problems for reaction networks. J Stat Mech P09009 (2013) DOI: 10.1088/1742-5468/2013/09/P09009
  4. D De Martino et al. Counting and correcting thermodynamically infeasible flux cycles in genome-scale metabolic networks. Metabolites 3:946 (2013) DOI: 10.3390/metabo3040946
  5. FA Massucci et al. A novel methodology to estimate metabolic flux distributions in constraint-based models. Metabolites 3:838 (2013) DOI: 10.3390/metabo3030838
  6. F Caltagirone, U Ferrari, L Leuzzi, G Parisi, F Ricci-Tersenghi, T Rizzo, Critical Slowing Down Exponents of Mode Coupling Theory, Physical Review Letters, 108, 085702 (2012) DOI: 10.1103/PhysRevLett.108.085702.
  7. L Leuzzi, G Parisi, F Ricci-Tersenghi, JJ Ruiz-Lorenzo, Ising spin-glass transition in a magnetic field outside the limit of validity of mean-field theory, Physical Review Letters 103, 267201 (2009) DOI: 10.1103/PhysRevLett.103.267201.
  8. L Leuzzi, G Parisi, F Ricci-Tersenghi, JJ Ruiz-Lorenzo, Dilute one-dimensional spin glasses with power law decaying interactions,  Physical Review Letters 101, 107203 (2008) DOI: 10.1103/PhysRevLett.101.107203 .
  9. L Leuzzi, TM Nieuwenhuizen, Thermodynamics of the glassy state,  Taylor & Francis, CRC Press (2007)
  10. A Crisanti, L Leuzzi, Stable solution of the simplest spin model for inverse freezing,  Physical Review Letters 95, 087201 (2005) Doi: 10.1103/PhysRevLett.95.087201.


  1. LoTGlaSy: Low Temperature Glassy System, ERC advanced, (2015-2020)
  2. Simons Collaboration on Cracking the Glass Problem: (2015-2020)
  3. Meccanica statistica e complessità, PRIN 2015-2018, (2015-2018)

Latest News

Costituzione del nuovo Ispc-Cnr

IV incontro - nuovo Istituto di Scienze del Patrimonio Culturale - CNR

Lecce, 20 aprile 2018

Aula Rita Levi Montalcini - ore 11:00

CNR NANOTEC c/o Campus Ecotekne

Per comunicazioni inerenti il processo di riorganizzazione potete scrivere a:

Tutte le informazioni che riguardano gli incontri, compresi gli indirizzi dello streaming, li trovate sul sito

Informazioni logistiche:

Nanotechnology day '18

Nanotechnology day '18

Lecce, 18 aprile 2018

CNR NANOTEC c/o Campus Ecotekne

Torna con un calendario denso di appuntamenti, tra seminari, mostre, dimostrazioni sperimentali, visite ai laboratori, torna  il tradizionale appuntamento con la “Settimana della cultura scientifica”, in programma all'Università del Salento dal 16 al 21 aprile 2018, nato dalle linee guida del progetto ministeriale “Piano Lauree Scientifiche”, al quale l’Ateneo salentino aderisce sin dalla fondazione nel 2003 per i Corsi di Laurea in Fisica e in Matematica.

Oltre millecinquecento studenti attesi dalle scuole superiori di Lecce, Brindisi e Taranto per partecipare agli incontri in programma che si terranno presso le sede del Dipartimento di Matematica e Fisica “Ennio De Giorgi” e il CNR Nanotec.

L’obiettivo della “Settimana della cultura scientifica”, che si aprirà con una giornata interamente dedicata alle Nanotecnologie, è quello di avvicinare i giovani alla Scienza.

Programma completo dell'evento

Loretta del Mercato, si aggiudica l'ERC STARTING GRANT 2017

Loretta del Mercato, si aggiudica  l'ERC STARTING GRANT 2017

uno dei bandi più competitivi a livello europeo.

Lecce, 6 settembre 2017 

Lo European Research Council, che promuove la ricerca di eccellenza in Europa, nei giorni scorsi ha reso noti i nomi dei 406 vincitori della selezione ERC STARTING GRANT 2017, il bando tra i più competitivi a livello internazionale.

Su 3085 progetti presentati, 406 i progetti selezionati a cui sono stati destinati i 605 i milioni di euro di investimento. 48 le nazioni di provenienza dei ricercatori, soltanto 17 gli Italiani che condurranno le loro ricerche nel nostro paese, tra cui Loretta del Mercato, ricercatrice dell'Istituto di Nanotecnologia del Consiglio Nazionale delle Ricerche di Lecce.

Un importante riconoscimento alla ricerca nel settore della medicina di precisione condotta presso il CNR NANOTEC, un indiscusso premio al talento della giovane ricercatrice che, a 38 anni e un contratto a tempo determinato, sarà a capo del progetto "Sensing cell-cell interaction heterogeneity in 3D tumor models: towards precision medicine – INTERCELLMED".

Il progetto, il cui obiettivo è affrontare uno dei problemi più spinosi della ricerca sul cancro, ovvero la difficoltà nel trasformare i risultati delle ricerche scientifiche in applicazioni cliniche per i pazienti e che vedrà coinvolto l'Istituto tumori "Giovanni Paolo II" di Bari, si propone di sviluppare nuovi modelli in vitro 3D di tumore del pancreas, alternativi ai modelli animali, ingegnerizzati con un set di sensori nanotecnologici che consentiranno di monitorare le interazioni delle cellule tumorali con il loro micorambiente, verificare l'appropriatezza delle terapie prima della somministrazione ai pazienti oncologici e quindi prevedere la risposta dei singoli pazienti ad una o più terapie antitumorali.

La realizzazione di queste piattaforme 3D multifunzionali consentirà di superare le evidenti differenze intercorrenti tra "modelli animali" ed esseri umani fornendo dati attendibili ed in tempi più rapidi rispetto ai dati ottenuti tramite lunghi e costosi procedimenti di sperimentazione sugli animali. Le tecnologie e i modelli sviluppati saranno estesi anche ad altre forme di tumori solidi nonché impiegati per studi nell'ambito della ingegneria tissutale e della medicina rigenerativa.

Rassegna stampa e Video