Colloidal Inorganic Nanocrystals


Colloidal Inorganic Nanocrystals, otherwise known as ‘artificial atoms’ because the density of their electronic states, which controls many physical properties, can be regularly tuned by maneuvering the chemical composition and the morphology, represent a class of nanometer-sized, solution-grown inorganic particles generally stabilized by a layer of surfactants attached to their surface. Nowadays the development of synthetic approaches for their production requires deep knowledge and effective control of the nucleation and growth processes of a new solid phase. Such understanding becomes fundamental to the tailoring of new types of nanostructured functional materials. The major focus of this research area aims, trough wet-chemistry approaches, at: 1) the growth of nanostructured inorganic architectures, 2) the investigation of the chemical and physical reaction components governing the development, and 3) the characterization of the morphological, structural, magnetic and opto-electronic emerging features. The research area is organized according to five main research headings, hereafter listed.


  1. Synthesis of single-material nanocrystals.
  2. Synthesis of hetero-structured nanocrystals.
  3. Nanocrystal self-assembly.
  4. Nanoscopic surfaces and interfaces.
  5. Pulsed laser ablation in liquids: plasma-assisted approach designed for nanoparticle synthesis.

Synthesis of  single-material Nanocrystals

Research activities aim at developing advanced breeds colloidal inorganic nanocrystals, made of plasmonic, magnetic or semiconductor materials, with precisely engineered compositional, structural and geometric features and predictable chemical-physical properties. Control over the fundamental thermodynamic and kinetic processes underlying nanocrystal homogeneous nucleation and growth is achieved upon liquid-phase processing of appropriate molecular precursors in hot mixtures of coordinating solvents and surfactants under controlled atmospheres.

Scientific highlights:

  1. development of synthesis protocols to robust and easily solution-processable organic-capped nanocrystals.
  2. Deliberate selection of crystal phases for polymorphic materials.
  3. Control of nanocrystal composition and doping.
  4. Precise tuning of nanocrystal size over the sub 200 nm regime.
  5. Engineering of nanocrystal shapes (spheres, rods, polypods, sheets, platelets, tubes) and studies on nanocrystal formation mechanisms.
  6. Atomic-level compositional and structural characterization of the developed nanocrystals.
  7. Spectroscopic and magnetic characterization.
  8. Study of the correlation holding between composition, structure and geometry of the as-synthesized nanocrystals, and their optical, magnetic and (photo)catalytic properties.

Synthesis of Hetero-Structured Nanocrystals

Research activities aim at developing and characterizing colloidal all-inorganic multicomponent heterostructured nanocrystals, in which domains of different semiconductor, plasmonic and/or magnetic materials are assembled together via epitaxial bonding interfaces into elaborate concentric/eccentric onion-like or oligomer-type architectures. Control over the fundamental thermodynamic and kinetic processes underlying nanocrystal heterostructuring is achieved within the context of sequential seeded-growth schemes.

Scientific highlights:

  1. preparation of robust and easily solution-processable organic-capped nanocrystal heterostructures.
  2. Engineering of heterostructure topology by deliberate selection of the relative spatial arrangment of the domain subcomponents and studies on mechanisms of heterostructuring.
  3. Atomic-level compositional and structural characterization of the developed heterostructures, with emphasis on identification of epitaxial relationships and lattice strain distribution.
  4. Spectroscopic and magnetic characterization.
  5. Study of the correlation holding between structural and topological features of the heterostructures, and their optical, magnetic and (photo)catalytic properties.

Nanocrystal Self-Assembly

Research activity exploits the ability of nanoscopic materials to self-organize into large-scale assembly structures that exhibit unique collective properties. Research interest aims at the self-assembly of colloidal nanocrystals having well-defined facets or anisotropic shapes. In particular to anisotropic one- and two-dimensional nanocrystals, notably nanorods, nanowires and layered nanocrystals, which can be arranged into a multitude of higher-order assembly structures.

Scientific highlights:

  1. anisotropic nanocrystal-based structures organized into non-closed-packed and close-packed configurations.
  2. Novel optical and (photo)catalytic properties deriving from the assembly of anisotropic nanoparticles.
  3. 3D Superstructures formed by anisotropic nanostructures.
  4. Nanocrystal-based device applications.

Nanoscopic Surfaces and Interfaces

Nanometer-sized crystallites show inherently large surface-to-volume ratio. The research program puts emphasis on the surface chemistry of the colloidal inorganic semiconductor nanocrystals and use it as a tool to subtly tune their optoelectronic properties and inter-nanocrystal non-covalent bonding interactions.

We ultimately pursue a thorough description towards control of the interfaces in nanocrystal-based solids over multiple length scales.

Scientific highlights.

  1. Identify chemical composition and dynamics of colloidal nanocrystal surfaces.
  2. Develop chemical strategies for the modification of nanoscopic surfaces.
  3. Describe and explain ligand/core electronic coupling.
  4. Control ligand-mediated bonding interactions and inter-nanocrystal electronic interactions.

Pulsed Laser Ablation in Liquids: Plasma-Assisted Approach Designed for Nanoparticle Synthesis

Pulsed Laser Ablation in Liquids (PLAL) from the experimental point of view is a relatively simple process to produce nanoparticles (NPs) and nanostructures in a “clean” way without dangerous reactants or undesired contaminants, requiring no extreme conditions of the environment synthesis. According to this approach, a solid target is immersed in a liquid medium and the laser beam is focused through the liquid onto the target surface. The laser induced plasma and the further cavitation bubble generation lead to NPs formation. Naked NPs produced through this approach can be successfully employed in a wide range of application fields, taking advantages of their different surface reactivity (if compared to the surface of the coated-NPs produced by chemical methods). Scientific highlights.

Fundamental aspects of Laser Induced Plasma and bubble in liquid during NPs production.

  1. Spectroscopic studies of laser-liquid interaction (with liquid at ambient and high pressure) for the formation mechanisms characterization of NPs and nanostructures in liquid.

Nanoparticles and nanostructures production by PLAL and applications.

  1. Metal NP production in water without any kind of stabilizer.
  2. Carbon nanostructures production in water at ambient and high pressure.
  3. Study of the interaction of naked NPs with biological systems (e. Human Ubiquitin, Human Serum Albumin (HSA), human cells, etc.)
  4. Applications of NP field enhancement effects through the Nanoparticles Enhanced Laser Induced Breakdown Spectroscopy (NE-LIBS) technique.

Facilities & Labs

CNR Nanotec @ Lecce

P.LAS.M.I. Lab @ Bari




CNR Researcher

Davide_CozzoliPantaleo Davide


Associate Professor

Angela FioreAngela


Associate Researcher



CNR Researcher



Associate PostDoc



Associate PostDoc



Associate Researcher



CNR Researcher


De Giacomo

Associate Professor



Associate PostDoc



Associate PhD Student



Associate PostDoc


  1. De Giacomo, Can Koral, G. Valenza, R. Gaudiuso, M. Dell’Aglio, Nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for microdrop analysis at subppm level, Anal. Chem. 88, 5251−5257, (2016) DOI: 10.1021/acs.analchem.6b00324
  2. Palazzo, G. Valenza, M. Dell’Aglio, A. De Giacomo On the stability of gold nanoparticles synthesized by laser ablation in liquids, Colloid Interf. Sci. (2016) DOI: 10.1016/j.jcis.2016.09.017
  3. Caliandro, T. Sibillano, B. D. Belviso, R. Scarfiello, J. C. Hanson, E. Dooryhee, M. Manca, P. D. Cozzoli, C. Giannini, Static and dynamical structural investigations of metal-oxide nanocrystals by powder X-ray diffraction: colloidal tungsten oxide as a case of study, Chem PhysChem 17, 699-709 (2016) DOI: 10.1002/cphc.201501175
  4. Grisorio, D. Debellis, G.P. Suranna, G. Gigli, C. Giansante, The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots, Angew. Chem. Int. Ed. 55(23), 6628–6633, (2016) DOI: 10.1002/anie.201682361
  5. Gryn, E. Lacaze, L. Carbone, M. Giocondo, B. Zappone, Electric-Field-Controlled Alignment of Rod-Shaped Fluorescent Nanocrystals in Smectic Liquid Crystal Defect Arrays, Adv. Funct. Mater. 2016 DOI: 10.1002/adfm.201602729.
  6. Geng, M. Manceau, N. Rahbany, V. Sallet, M. De Vittorio, L. Carbone, Q. Glorieux, A. Bramati, C. Couteau, Localised Excitation of a Single Photon Source by a Nanowaveguide, Scientific Reports 6, 19721, (2016) DOI: 10.1038/srep19721.
  7. Dell’Aglio, V. Mangini, G. Valenza, O. De Pascale, A. De Stradis, G. Natile, F. Arnesano, A. De Giacomo, Silver and gold nanoparticles produced by pulsed laser ablation in liquid to investigate their interaction with ubiquitin, App. Surf. Sci. 374, 297–304 (2016) DOI: 10.1016/j.apsusc.2015.11.253.
  8. Dell’Aglio, V. Mangini, G. Valenza, O. De Pascale,A. De Stradis, G. Natile, F. Arnesano, A. De Giacomo, Silver and gold nanoparticles produced by pulsed laser ablation in liquid to investigate their interaction with ubiquitin, Appl. Surf. Sci. 374, 297–304, (2016) DOI: 10.1016/j.apsusc.2015.11.253.
  9. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati, Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature, ACS Nano 9, 7992, (2015) DOI:10.1021/acsnano.5b01354.
  10. Pelliser, M. Manceau, C. Lethiec, D. Coursault, S. Vezzoli, G. Leménager, L. Coolen, M. DeVittorio, F. Pisanello, L. Carbone, A. Maitre, A. Bramati and E. Lacaze, Alignment of Rod-Shaped Single-Photon Emitters Driven by Line Defects in Liquid Crystals, Adv. Funct. Mater. 25, 1719-1726, (2015) DOI: 10.1002/adfm.201403331.
  11. Giuri, S. Rella, C. Malitesta, S. Colella, A. Listorti, G. Gigli, A. Rizzo, P.D. Cozzoli, M. R. Acocella, G. Guerra, C. Esposito Corcione, Synthesis of Reduced Graphite Oxide By a Novel Green Process based on UV Irradiation, Sci. Adv. Mater. 7, 2445-2451 (2015) DOI: 10.1166/sam.2015.2472.
  12. Cesaria, A. P. Caricato, A. Taurino, V. Resta, M. R. Belviso, P. D. Cozzoli, M. Martino, Matrix-Assisted Pulsed Laser deposition of Pd Nanoparticles: The Role of Solvent, Sci. Adv. Mater. 7, 2388-2400 (2015) DOI: 10.1166/sam.2015.2661.
  13. Lekshmi, C. Nobile, R. Buonsanti, P. D. Cozzoli, G. Maruccio, Spin filter effect in iron oxide nanocrystal arrays, J. Indian Chem. Soc. 92, 739-742, (2015).
  14. Giansante, I. Infante, E. Fabiano, R. Grisorio, G.P. Suranna, G. Gigli, Darker-than-Black” PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands, JACS, 137(5), 1875–1886, (2015).
  15. Giansante, R. Mastria, G. Lerario, L. Moretti, I. Kriegel, F. Scotognella, G. Lanzani, S. Carallo, M. Esposito, M. Biasiucci, A. Rizzo, G. Gigli, Molecular-Level Switching of Polymer/Nanocrystal Non-Covalent Interactions and Application in Hybrid Solar Cells, Adv. Funct. Mat. 25(1), 111-119, (2015).
  16. P. Pileni, N. Pinna, P. D. Cozzoli, Self-assembled supracrystals and hetero-structures made from colloidal nanocrystals, CrystEngComm. 16, 9365-9367, (2014) (INVITED EDITORIAL for a SPECIAL ISSUE) doi: 10.1039/C4CE90127D.
  17. Manca, L. De Marco, R. Giannuzzi, R. Agosta, C. Dwivedi, A. Qualtieri, P. D. Cozzoli, V. Dutta, G. Gigli, TiO2 nanorods-based photoelectrodes for dye solar cells with tunable morphological features, Thin Solid Films 568, 122-130 (2014) DOI: 10.1016/j.tsf.2013.10.155.
  18. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R Belviso, P. D. Cozzoli, A. Rizzo, G. Gigli, Surface Chemistry of Arenethiolate-Capped PbS Quantum Dots and Application as Colloidally Stable Photovoltaic Ink, Thin Solid Films 560, 2-9, (2014) DOI: 10.1016/j.tsf.2013.10.060.
  19. F. Scremin, M. R. Belviso, D. Altamura, C. Giannini, P. D. Cozzoli, Comparative Raman study of organic-free and surfactant-capped rod-shaped anatase TiO2 nanorods, Sci. Adv. Mater. 6, 923-932 (2014) DOI: 10.1166/sam.2014.1856.
  20. Carzino, F. Pignatellu, D. Farina, B. Torre, M. Scotto, L. Marini, G. Bertoni, G. Caputo, P. D. Cozzoli, A. Diaspro, A. Athanassiou, Laser-induced disaggregation of TiO2 nanofillers for uniform nanocomposites, Nanotechnology 25, 125702, (2014) DOI: 10.1088/0957-4484/25/12/125702.
  21. Giannuzzi, M. Manca, L. De Marco, M. R. Belviso, A. Cannavale, T. Sibillano, C. Giannini, P. D. Cozzoli, G. Gigli, Ultrathin TiO2(B) Nanorods with Superior Lithium-Ion Storage Performance, ACS Appl. Mater. Interf. 6, 1933–1943, (2014) DOI: 10.1021/am4049833.
  22. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E.Giacobino, L. Carbone, M. De Vittorio and A. Bramati Effect of Charging on CdSe/CdS dot-in-rods Single Photon Emission, Phys. Rev. B 90, 035311, (2014).
  23. A. Shcherbina, G.A. Shcherbina, M. Manceau, S. Vezzoli, L. Carbone, M. De Vittorio, A. Bramati, E. Giacobino, M.V. Chekhova, G. Leuchs, Photon Correlations for Colloidal Nanocrystals and their Clusters, Optics Letters 39, 1791, (2014).

Other Selected publications:

  1. Dell’Aglio, R. Gaudiuso, R. Elrashedy, O. De Pascale, G. Palazzo, A. De Giacomo, Collinear double pulse laser ablation in water for the production of silver nanoparticles, Phys. Chem. Chem. Phys (2013), ISSN: 1463-9084, DOI: 10.1039/C3cp54194k.
  2. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina,G. Compagnini, S. Barcikowski, Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production, Phys. Chem. Chem. Phys. 15, 3083-3092, (2013), ISSN: 1463-9076, DOI: 10.1039/C2cp42649h.
  3. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M.R. Belviso, P.D. Cozzoli, A. Rizzo, G. Gigli, Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics, J. Phys. Chem. C 117(25), 13305–13317, (2013) DOI: 10.1021/jp403066q.
  4. De Giacomo, A. De Bonis, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G.S. Senesi, F. Taccogna, R. Teghil, Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructure, J. Phys. Chem. C, Nanomaterials & Interfaces 115, 5123-5130, (2011) DOI: 10.1021/Jp109389c.



NANOAPULIA – Nano-Photocatalysts for a Cleaner Atmosphere, FSC 2007-2013, MIUR-granted, Cluster Tecnologici Regionali n°368 del 23-13-2014 (2015-2017)

CARIPLO – Chemical Synthesis and Characterization of Magneto-Plasmonic Nano-Heterostructures, (Fondazione Cariplo, contract n. 2010–0612), (2011-2013)

AEROCOMP – Preliminary Study of Nanocomposites Materials for Aeronautical Applications, Industrial Research Project, MIUR-granted, contract n. DM48391), (2010-2012)

Innovative materials and systems for laser ablation of cornea applications, Progetto strategico Regione Puglia 2008 PS 046, (2009-2013).

CLaN -Combined Laser Nanotechnolgy , PON FESR Basilicata (art. 37.6.b del reg. CE n. 1083/2006), (2007-2013)

Latest News

  • Loretta del Mercato, si aggiudica l’ERC STARTING GRANT 2017

    Loretta del Mercato, si aggiudica  l’ERC STARTING GRANT 2017

    uno dei bandi più competitivi a livello europeo.

    Lecce, 6 settembre 2017 

    Lo European Research Council, che promuove la ricerca di eccellenza in Europa, nei giorni scorsi ha reso noti i nomi dei 406 vincitori della selezione ERC STARTING GRANT 2017, il bando tra i più competitivi a livello internazionale.

  • Zeiss Microscopy Technology and Complete Correlative Workflow

    Zeiss Microscopy Technology and Complete Correlative Workflow

    Lecce, Italy, 2017 Wednesday July 19th 

    CNR NANOTEC @ Lecce, Aula Seminari – pal. G, Piano Terra

    Program – PDF

    Zeiss, as microscopy technology leader, provides the unique complete imaging solution ranging from light, confocal, electron, ion and Xray modalities with a complete and straightforward correlative workflow. An overview of different technologies will be presented with a special focus on X-Rray microscopy.

  • MCS 2017

    International Workshop on Micropropulsion and CubeSats

    Bari, Italy, 26 – 27 June 2017

    Program – MSC2017

    This narrow-field, invited-only meeting is the first attempt to bring together the Materials and Micropropulsion communities with a view to contribute to the development of the Global Materials and Micropropulsion Roadmap, and set such meetings to a regular basis.