Turbolenza in Plasmi

La turbolenza è un fenomeno molto diffuso, che può essere osservato su una vasta gamma di scale, dagli ammassi di galassie fino alla micro e nano fluidica. E’ osservata non solo nei fluidi neutri, ma anche in fluidi carichi e magnetizzati, come ad esempio I plasmi astrofisici. Lo studio della turbolenza richiede un approccio sia teorico che sperimentale, ed è basato anche sull’analisi dati e sulle simulazioni numeriche. Tali approcci sono tutti studiati presso il nostro gruppo, con particolare attenzione alla turbolenza nei plasmi spaziali e di laboratorio.

La maggior parte della materia visibile dell’universo è nello stato di plasma. La dinamica dei plasmi astrofisici è spesso caratterizzata da un alto livello di turbolenza, con la conseguente generazione di un gran numero di interessanti processi fisici, quali ad esempio: la dissipazione dell’energia, l’accelerazione di particelle, l’eccitazione di onde elettromagnetiche, il riscaldamento delle particelle, la riconnessione magnetica, e la formazione di onde d’urto. Talli fenomeni possono essere studiati in situ solo nei plasmi spaziali, grazie alle misure effettuate dagli strumenti a bordo di missioni spaziali. I dati sono studiati utilizzando strumenti diagnostici particolari, che permettono la convalida di idee teoriche, e di verificare la validità di modelli semplificati. L’uso delle simulazioni numeriche rappresenta un ulteriore, sostanziale strumento di supporto per tali studi. Lo studio della turbolenza nello spazio interplanetario è di grande interesse per la comprensione della dinamica dei plasmi astrofisici, ma anche per le ricadute sulla ricerca nei plasmi di laboratorio e per la comprensione delle interazioni Sole-Terra.

Lo studio dei plasmi spaziali della nostra unità è quindi basato su tre approcci principali: l’analisi dei dati raccolti dalle missioni spaziali; lo sviluppo di modelli teorici e di nuove tecniche di analisi dati; l’uso massiccio di simulazioni numeriche. L’alta potenza di calcolo numerico richiesta per l’analisi numerica rende necessario l’utilizzo di centri di calcolo adeguati, sia nazionali (CINECA) che locali (HPCC UNICAL).

Alcuni esempi dell’analisi eseguita dal nostro gruppo sono: la caratterizzazione dettagliata dell’intermittenza nella turbolenza del vento solare [Sorriso-Valvo et al. 1999; 2015], e la prima verifica della legge di scala teorica per il flusso di energia turbolenta nel vento solare [Sorriso-Valvo et al., 2007].

Facilities & Labs

S.Li.M. Lab @ Roma

People

Luca_Sorriso_valvoLuca

Sorriso-Valvo

Ricercatore CNR

Publications

  1. Bruno, D. Telloni, L. Primavera, E. Pietropaolo, R. D’Amicis, L. Sorriso-Valvo, V. Carbone, F. Malara and P. Veltri, Radial evolution of intermitency of density fluctuations in the fast solar wind, The Astrophysical Journal 786, 53 (2014), DOI: 10.1088/0004-637X/786/1/53.
  2. H. K. Chen, L. Sorriso-Valvo, J. Safrankova, Z. Nemecek, Intermittency of solar wind density fluctuations from ion to electron scales,  The Astrophysical Journal Letter 789, L8 (2014), DOI: 10.1088/2041-8205/789/1/L8.
  3. De Vita, L. Sorriso-Valvo, F. Valentini, S. Servidio, L. Primavera, V. Carbone and P. Veltri, Analysis of cancellation exponents in two-dimensional Vlasov turbulence, Physics of Plasmas 21, 072315 (2014), DOI: 10.1063/1.4891339.
  4. Sorriso-Valvo, G. De Vita, M. Kazachenko, S. Krucker, L. Primavera, S. Servidio, A. Vecchio, B. Welsch, G. Fisher, F. Lepreti, V. Carbone, Sign singularity and flares in solar active region NOAA 11158, The Astrophysical Journal 801, 36 (2015), DOI: 10.1063/1.4891339
  5. Yordanova, S. Perri, L. Sorriso-Valvo and V. Carbone, Multipoint observation of anisotropy and intermittency in solar-wind turbulence, EPL 110, 19001 (2015), DOI: 10.1209/0295-5075/110/19001.
  6. Chasapis, A. Retinò, F. Sahraoui, A. Vaivads, Y. Khotyaintsev, D. Sundkvist, A. Greco, L. Sorriso-Valvo, P. Canu, Thin current sheets and associated electron heating in turbulent space plasma, The Astrophysical Journal Letters 804, L1 (2015), DOI: 10.1088/2041-8205/804/1/L1.
  7. Sorriso-Valvo, R. Marino, L. Lijoi, S. Perri and V. Carbone, Self-consistent Castaing distribution of solar wind turbulent fluctuations, The Astrophysical Journal, 807, 86 (2015), DOI: 10.1088/0004-637X/807/1/86.
  8. De Vita, A. Vecchio, L. Sorriso-Valvo, C. Briand, L. Primavera, S. Servidio, F. Lepreti and V. Carbone, Journal of Space Weather and Space Climate, 5, A28 (2015), DOI: 10.1051/swsc/2015029.
  9. Rossi, F. Califano, A. Retinò, L. Sorriso-Valvo, P. Henri, S. Servidio, F. Valentini, A. Chasapis, and L. Rezeau, Two-fluid numerical simulations of turbulence inside Kelvin-Helmholtz vortices: intermittency and reconnecting current sheets, Physics of Plasmas, 22, 122303 (2015), DOI: 10.1063/1.4936795.
  10. Leonardis, L. Sorriso-Valvo, F. Valentini, S. Servidio, F. Carbone and P. Veltri, Multifractal scaling and intermittency in hybrid Vlasov-Maxwell simulations of plasma turbulence, Physics of Plasmas, 23, 022307 (2016), DOI: 10.1063/1.4942417.
  11. Pucci, F. Malara, S. Perri, G. Zimbardo, L. Sorriso-Valvo and F. Valentini, Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency, Month. Notes R. Astron. Soc. 459, 3395 (2016), DOI: 10.1093/mnras/stw877.
  12. Vaivads et al., Turbulence Heating ObserveR – satellite mission proposal, J. Plasma Phys. 82, 905820501 (2016), DOI: 10.1017/S0022377816000775.

Other selected publications

  1. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophysical Research Letters 26, 1801-1804 (1999), DOI: 10.1029/1999GL900270.
  2. Carbone, L. Sorriso-Valvo, E. Martines, V. Antoni, P. Veltri, Intermittency and turbulence in a magnetically confined fusion plasma, Physical Review E 62, R49-R52 (2000), DOI: 10.1103/PhysRevE.62.R49.
  3. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti., P. Veltri, R. Bruno, B. Bavassano, Pietropaolo E., Observation of Inertial Energy Cascade in Interplanetary Space Plasma, Physical Review Letters 99, 115001-1-115001-4 (2007), DOI:             10.1103/PhysRevLett.99.115001.
  4. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small-scale energy cascade of the solar wind turbulence, The Astrophysical Journal 674, 1153-1157 (2008), DOI: 10.1086/524056.
  5. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations, Physical Review Letters 103, 061102 (2009), DOI: 10.1103/PhysRevLett.103.061102.
  6. Zimbardo, A. Greco, L. Sorriso-Valvo, S. Perri, Z. Voros, G. Aburjania, K. Chargazia, O. Alexandrova, Magnetic Turbulence in the Geospace Environment, Space Science Reviews 156, 89 (2010), DOI: 10.1007/s11214-010-9692-5.
  7. Perri, V. Carbone, A. Vecchio, R. Bruno, H. Korth, T. H. Zurbuchen, L. Sorriso-Valvo, Phase-ynchronization, Energy Cascade, and Intermittency in Solar-Wind Turbulence, Physical Review Letters 109, 245004 (2012), DOI: 10.1103/PhysRevLett.109.245004
  8. Dudok de Wit, O. Alexandrova, I. Furno, L. Sorriso-Valvo, G. Zimbardo, Methods for Characterising Microphysical Processes in Plasmas, Space Science Reviews 178, 693 (2013), DOI: 10.1007/978-1-4899-7413-6_21
  9. Alexandrova, C. H. K. Chen, L. Sorriso-Valvo, T. Horbury, S. D. Bale,    Solar Wind Turbulence and the Role of Ion Instabilities, Space Science Reviews 178, 101, (2013), DOI: 10.1007/s11214-013-0004-8
  10. Maruca, S. D. Bale, L. Sorriso-Valvo, J. C. Kasper, M. L. Stevens, Collisional Thermalization of Hydrogen and Helium in Solar-Wind Plasma, Physical Review Letters 111, 241101 (2013), DOI: 10.1103/PhysRevLett.111.241101.

Project

Turboplasmas: FP7 European Marie Curie IRSES 2010-269297 , (2011-2014)

Anisotropy and intermittency in solar wind turbulence: ISSI Team, (2014-2015)

Kinetic Turbulence and Heating in the Solar Wind: ISSI Team (2013-2014)

Latest News

La settimana del rosa digitale - 4^ed

La settimana del rosa digitale - 4^ed

 

Percorso di condivisione della carriera di scienziato-donna fatto attraverso esperimenti di estrazione di sostanze chimiche partendo dal cibo.

11 e 15 marzo 2019

Via Marconi,39 - Casamassima Bari 70010

Che “cavolo" di arcobaleno-mamme e scienza un viaggio alla scoperta di cio’ che Madre Natura ci insegna.

con Eloisa Sardella (CNR Nanotec) e Laura Rosso (PSP)

maggiori info:

TERAMETANANO - International Conference on Terahertz Emission, Metamaterials and Nanophotonics

TERAMETANANO - IV ed.

Castello Carlo V, Lecce 27 -31 Maggio 2019

The IV edition of TERAMETANANO, the International Conference on Terahertz Emission, Metamaterials and Nanophotonics, will take place in Lecce (Italy) from 27 to 31 of May 2019 in the 16th-century Castle of Charles V   with two special nights that will be held in an original Theatre of Roman period.

 

TERAMETANANO is an annual conference that gather physicists studying a wide variety of phenomena in the areas of nano-structuresnano-photonics and meta-materials, with special attention to the coupling between light and matter and in a broad range of wavelengths, going from the visible up to the terahertz.

 

Al via la fase 2 del Tecnopolo per la medicina di precisione

Firmata convenzione tra Regione, Università e Cnr per avvio seconda fase del Tecnopolo

Bari, 27 novembre 2018 

Sottoscritto stamane l’accordo tra Regione PugliaCnr Consiglio nazionale delle ricerche, Irccs Giovanni Paolo II di Bari e Università di Bari per l’avvio della seconda fase del Tecnopolo per la Medicina di Precisione. Sede del tecnopolo, il CnrNanotec.

“La sfida della medicina moderna è tradurre nella pratica clinica gli enormi progressi compiuti dalla scienza e dalla tecnologia. In questo contesto le nanotecnologie, focalizzate sull’indagine e sulla manipolazione della materia a livello nanometrico-molecolare, si presentano come uno strumento potentissimo al servizio della medicina di precisione, la nuova frontiera che punta allo sviluppo di trattamenti personalizzati per il singolo paziente”, afferma  Giuseppe Gigli, direttore di Cnr Nanotec e coordinatore del Tecnopolo.

Link video dichiarazione Massimo Inguscio: http://rpu.gl/uChUl

Link video di presentazione Tecnomed: http://rpu.gl/Qqerm

Link video dichiarazione Michele Emiliano: http://rpu.gl/aJoee